Polar Technology: Power & Communications Options

Roy Stehle

SRI International
Center for GeoSpace Studies
Menlo Park, CA 94025
roy.stehle@sri.com 650-859-2552

Polar Technology Conference Mountain View, California 12 – 13 April 2006

Polar Technology Conference 12-13 April 2006 Page 1

Presentation Overview

- Iridium Network loss of registration
- Webcams
- The Data Transport Network
- 7th Annual Clean Snowmobile Challenge
- PolarPower.Org Website
- NSF's Arctic Logistics Support

Iridium Network Loss of Registration

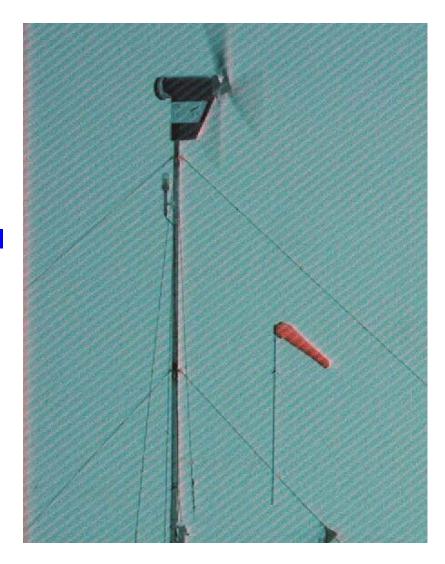
- Remote units that don't initiate a call are "lost" by the network
 - SRI's remote commercial unit showing "Busy"
- 1 Feb 2006 "PIL" procedure to force all DoD units to re-register
 - NOAA recovered 9 of 11 units as a result
 - Logistically too complex to be done for commercial units
- Remote unit must force a registration
 - Power cycling
 - AT+COPS=1
- MPT option from NAL Research
 - Developed for Raytheon Polar Services
 - Microcontroller senses transceiver state
 - Optional retrofit to 9522 LBTs

StarDot Technologies Netcam

Rugged design

Internal Web & FTP servers

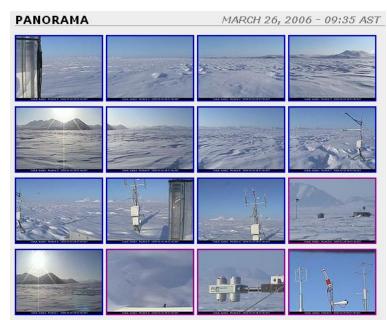
Standard: 640 x 480 maxMegapixel: 1280 x 960 max



Netcam MP Problems

- Internal DC/DC converters will lock to others causing power supply ripple that is visible in the image
 - MP CCD is very susceptible to noise on negative supply
 - Requires addition of additional capacitors (1000 μF)
 - "Only happens at remote locations"
- Red blooming in bright sun

StarDot Technologies Netcam (Cont'd)

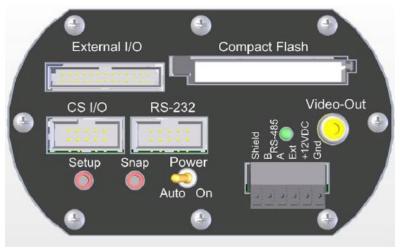

- Robust sensor resists burning with direct view of the sun
 - Any polar deployment will view the sun during some part of the year
 - Gradual burning of red solar arcs
- Internal Boa Web server hangs on StarBand (long delay) links
- Slow exposure adaptation

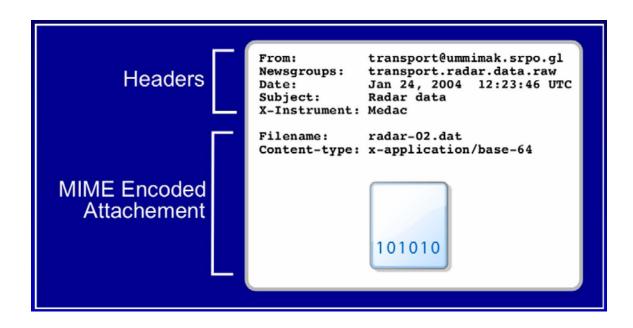
Webcam Deployment at Ivotuk, Alaska

- Sony SNC-RZ-30N
 - 640 x 480 pixel image
 - PTZ control
 - ~7 Watts
 - SD Memory & WLAN Slot
- Continuous operation
 - 10-min update of default image
 - 30-min, 16-frame schedule
- "Sunburn-tolerant" sensor
 - Good sensitivity (B&W aurora)
- Protocol failures at -20 °C
 - Power cycling of unit
- Servers can't tolerate satellite delay
 - Local protocol buffering

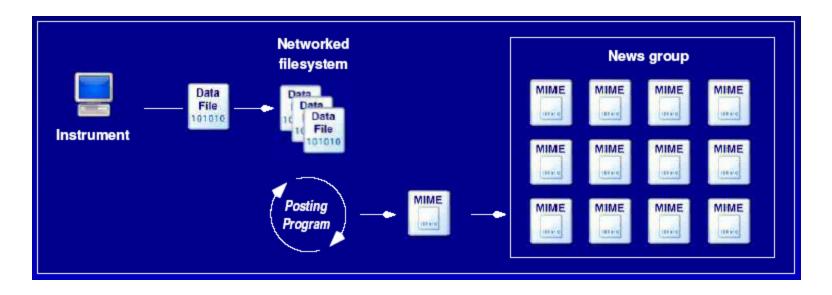
Rime Icing at Ivotuk, Alaska

- Limited power availability
- Large viewing area for PTZ Webcam
- Techniques under consideration
 - Smoother housing
 - Closer thermal coupling of heater to housing
 - Inflatable bladder at mid-point
 - Alcohol mister

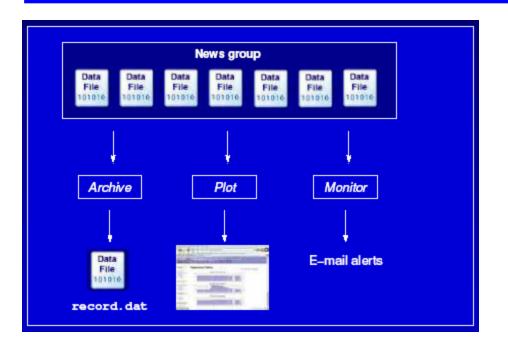


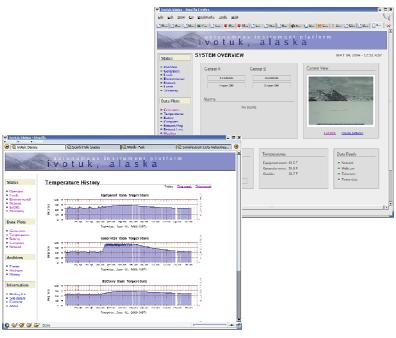

Campbell Scientific Inc. CC640 Digital Camera

- 640 x 480 pixel JPEG image (640 x 504 pixels w/ timestamp)
- 9-15 VDC @ 250 mA (250 uA quiescent current)
- 40 to +70 ° C operating temperature range
- Compact Flash memory (512 MB max.)
- Interface
 - RS-232 or RS-485
 - CS I/O

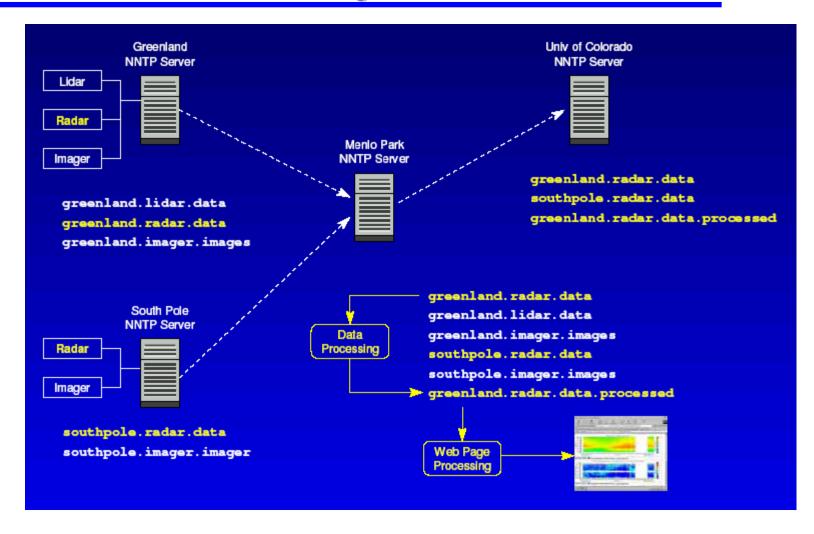


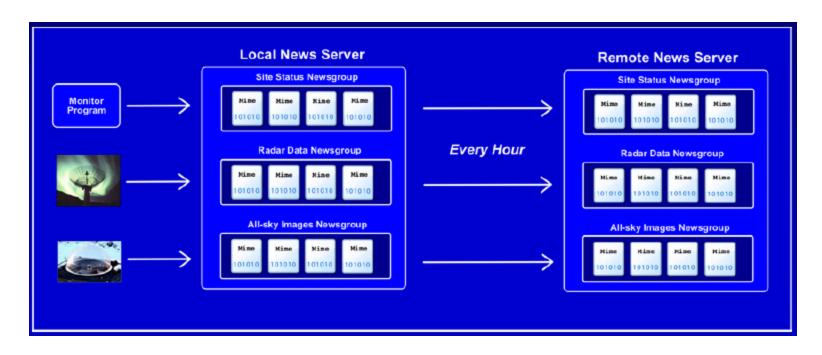
The Data Transport Network


- Data transfers as Usenet message attachments
- Well developed protocols for reliable message transfer over a wide variety of networks
- Headers provide the metadata; content can be any type of data


Newsgroup Message Queue

- Remote device writes data files to shared network folder
- Posting program encodes data into message format
- Newsgroup acts as a queue to hold messages
 - Multiple newsgroups can be handled


Newsgroup Publication and Subscription


- One producer, many consumers (i.e., marketplace)
- Short-term history with automatic expiration
- Data interpretation for quick-look display
- Status monitor with distribution of Alerts through e-mail distribution

Multisite Data Processing

Other sites can process data and post their results

Distribution to Remote News Servers

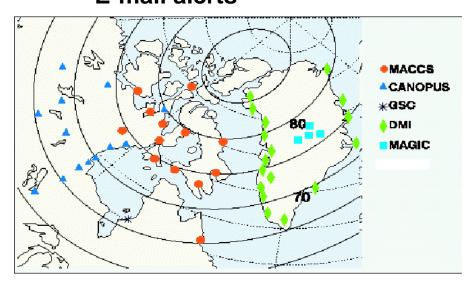
- Periodic replication of data to one or more remote servers (e.g., research organizations)
- Local file access, with access controls; avoids Internet delays
- Automated archival

Uploading of Instrument Commands and Schedule

- The newsgroup distribution is reciprocal
 - The remote instrumentation site can subscribe to a "Command" newsgroup
 - Command files can set a measurement and reporting schedule
- Typical process scheduling has Command upload occur before data downloads
 - Operational schedule usually of highest priority
 - Command files are typically small

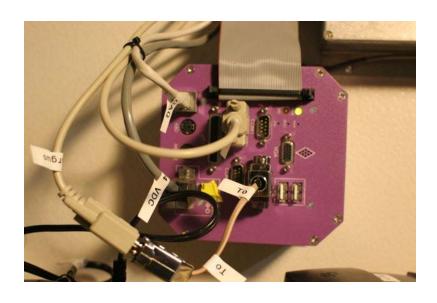
Magnetometer Array for Cusp and Cleft Studies (MACCS)

- Distributed Iridium-communicating sensor network
 - 2 Remote stations per Master polling station
 - 10-minute polling interval
 - ~30% of cycle available for abnormal condition handling
 - ~3 Mbytes/station/day of data in compressed form


Remote Stations:

- Data collection
- Archival to CD
- Health and status

Magnetometer Interface Linux Computer Iridium Transceiver


Base Station:

- Polling schedule
- Data retrieval and distribution
- E-mail alerts

Ivotuk, Alaska, Autonomous Instrumentation Platform

- Health and status monitoring for:
 - Diesel, wind, and photovoltaic power systems
 - StarBand geostationary satellite communications system
 - Local processing computer (PC)
- Webcam image and command buffer
- PC/104 processor with data acquisition

Advanced Modular Incoherent Scatter Radar (AMISR)

- Next generation of Sondrestrom, Greenland, system
 - Original did a save and display of 6 receiver channels (1.2 MBytes/sec)
 - Selected data display over 384-kbps, 2-hop, VSAT link
- Gumstix processor
 - 400-MHz ARM, 64-MB RAM, Digital I/O, Bluetooth, Linux
- Scaling of command and control to 1728 processors

The Data Transport Network

- Transport and Management routines overlay reliable Network
 News Transport Protocols
- Scaleable for:
 - Processor speed
 - Channel bandwidth
 - Input processes
- Open source, Linux-based code available at:

http://transport.sri.com/TransportDevel

Todd.Valentic@sri.com

7th Annual Clean Snowmobile Challenge

- Hosted by Michigan Technological University, Houghton, MI
- Initially driven by need for cleaner and quieter machines in the National Parks
- Weighted criteria
 - Reduced Emissions
 - Reduced Noise
 - Endurance
 - Towing Capability
 - Oral & WrittenPresentation
- Oxygenated Fuel
 - E20 (20% Ethanol)max for polar use

The start of the 100 mile endurance run to Copper Harbor – not all finished!

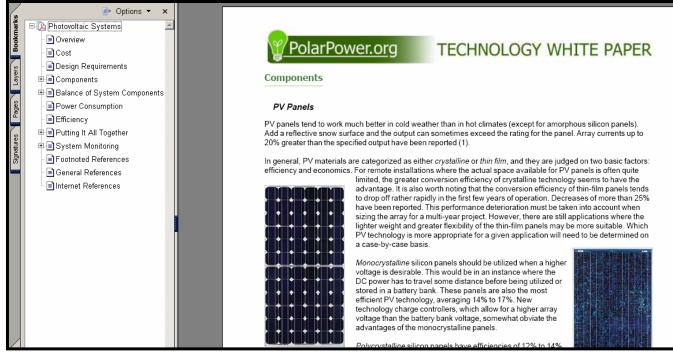
7th Annual Clean Snowmobile Challenge – cont'd

- Zero Emissions Category added in 2006 at VPR's urging
- Obvious need for use at research sites in the Arctic & Antarctic
- 2nd year for McGill University (Canada) entry
 - 100-lb machine
 - Li-lon battery (\$5K)
 - CVT transmission
 - 20-MPH top speed
 - 1200-lb sled pull
 - 7.5-mile range before failure (12-15 mile potential)

7th Annual Clean Snowmobile Challenge – cont'd

- 1st year for Utah State University entry
- Overall winner in class of 2 (Mid-pack of all Challenge entries)
 - 950-lb machine
 - Lead-acid battery
 - Weight penalized top speed
 - 1200-lb sled pull
 - 9-mile range

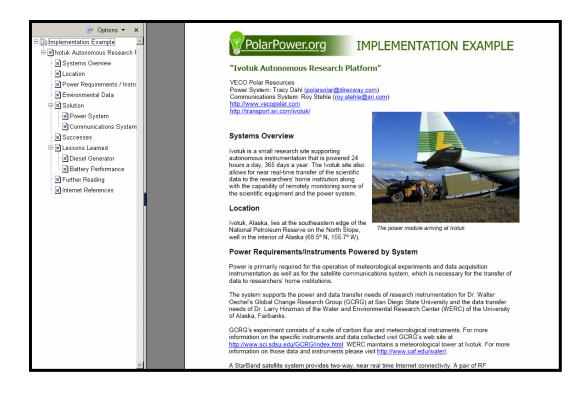
Website on Power Systems for Polar Deployment



 Series of PDFs offering detailed discussions of available technologies, determining suitability, design and implementation

considerations

- Topics such as...
 - √ Solar
 - ✓ Wind
 - ✓ Engine Generator
 - ✓ Electrical Fundamentals



Case Studies as Examples

- Existing deployments as examples of the technology used
- Seeking additional write-ups
 - Systems
 - Components
 - » Power Drain
 - » Temperature Range
 - Timers
 - Communications
 - Lessons learned
 - Other?

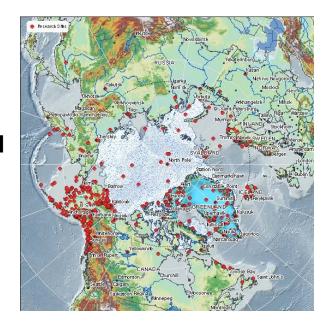
NSF's Arctic Logistics Support through VPR

Who Qualifies?

- Primarily Arctic Program, but support given to other OPP, non-Polar directorates within NSF, and even non-NSF agencies
- 2004 support (over 100 projects)
 - NSF/OPP 63%
 - Other NSF 18%
 - Other US gov't (mostly NASA) 8%
 - Foreign Funding Agencies 9%

NSF's Arctic Logistics Contractor: VECO Polar Resources

- Collaborative effort
 - VECO, USA Contract lead & management, construction, engineering
 - Polar Field Services Project planning, field management and logistics
 - SRI International Communications, computers, and power
- Funded through NSF's Arctic Research Support and Logistics Services Program



Services Available

Areas of Support

- Field Camps & Gear
- Air & Ground Transport
- Cargo Movement
- Safety & Remote Medical
- Polar Technologies

 - **⇒** Communications
 - **⇒ Power Systems**

Locations

- Alaska
- Greenland
- Canada
- Russia
- Arctic Ocean
- Northern Europe

How to get support?

- Contact VPR (http://www.vecopolar.com)
- Obtain support letter/logistics estimate to include in your NSF proposal
- Non-NSF support determined with Simon Stephenson, NSF Arctic Research Support and Logistics Program Manager, on a case-by-case basis and may include interagency funds transfer or cost-reimbursable support