BioLaunch: a novel Stanford faculty and student-run program in suborbital and small payloads

Lynn J. Rothschild^{1,2}, James Cutler^{2,3}, Robert Twiggs² & Matthew Maniscalco³

¹NASA Ames Research Center ²Stanford University ³AstroDev

The Problem Need fast, small missions for astrobiology. High scientific return on investment. Train new mission scientists.

The Answer.

High altitude balloons, gliders, rockets and nanosatellites.

These can test equipment, operate science experiments, plus educational participation and public outreach.

High altitude balloon Long history, even within Agency. Types of experiments: Atmospheric and equipment testing Advantages for Astrobiology: quick local access to space, aerobiology of Earth, excellent analog for extraterrestial environments, good testbed, repeatable.

Conceived by Stanford faculty in

2007 as a novel multidisciplinary

educational and scientific project with

a focus on astrobiology payloads.

SSDL

Space and Systems Development Laboratory

- Space Systems Development Laboratory (SSDL)
 - Established ~ 1994
- Missions
 - Sapphire, Opal, QuakeSat-1, Genest
 - -MAST
 - PolarBot, Antarctic weather stations
- Student demographics:
 - ~400 students throughout the years
 - Before 2000, all Stanford students
 - Now a mixture of industry and Stanford
 - Expansion to SCPD (distance learning)

Bio Launch is a: Nars Analog

Physical measurements

 (solar & cosmic radiation, temperature, photos)

Prebiotic experiments

(polyaromatic hydrocarbons as sunscreen) 3. Biological measurements

(DNA damage, microbes, tardigrades)

4. Equipment testbed (Stanford Aero/Astro SSDL)

DNA damage experiments

This includes two types of experiments.

- 1. Base modification, for example, the production of thymine dimers from adjacent thymines using a dosimeter made of herring sperm DNA.
- 2. Nicking and breakage of the phosphate backbone using supercoiled plasmid DNA.

treatment HSDNA flight dark	mean cpd/mb 1047	st dev 100	6000	6000 moon and/mh									
HSDNA flight light 3729 679 HSDNA ground dark 1437 0 HSDNA ground light 3629 225 DUC flight dark 1300 50		679 0 225 50	5000										
pUC flight light pUC ground dark pUC ground light	5365 986 5308	704 0 682	1 4000 /pd un 3000	-									
666 A 659 T			2000	-									
675 C 686 G total: 2686 bp			1000										
139 TT so, total potential or 51,749.8 dimension	of 139 dimers in 26 s per megabase.	86 bp,	0	HSDNA flight dark	HSDNA flight light	HSDNA ground dark	HSDNA ground light	pUC flight dark	pUC flight light	pUC ground dark	pUC ground light		

DNA damage experiments

This includes two types of experiments.

- 1. Base modification, for example, the production of thymine dimers from adjacent thymines using a dosimeter made of herring sperm DNA.
- 2. Nicking and breakage of the phosphate backbone using supercoiled plasmid DNA. BioLaunch B07A; PAH

Results from Kenya, Jan 2007 Kyle Rothschild-Mancinelli

Bio Launch: **Future plans.**

- Better temperature and radiation measurements; annual variation
- DNA damage bases and breakage. Absolute amount. Correlate with both types of radiation.
- Expanded biologicals survival including genetic basis, air capture, viral induction.
- Testbed for miniaturized flight instrumentation.