
An Overview of Polar Satellite Imagery Composites Project Matthew A. Lazzara¹, Richard Dworak², Shelley Knuth^{1,*} Rick Korhs³ and, Jerry Robiadek⁴

¹Antarctic Meteorological Research Center (AMRC) ²Cooperative Institute for Meteorological Satellite Studies ³McIDAS User Group **4SSEC Data Center** Space Science and Engineering Center (SSEC) University of Wisconsin-Madison, Madison, WI, USA

O - 202 - M

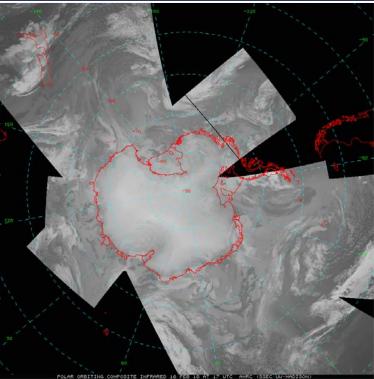
*Now at the University of Colorado-Boulder

Cooperative Institute for

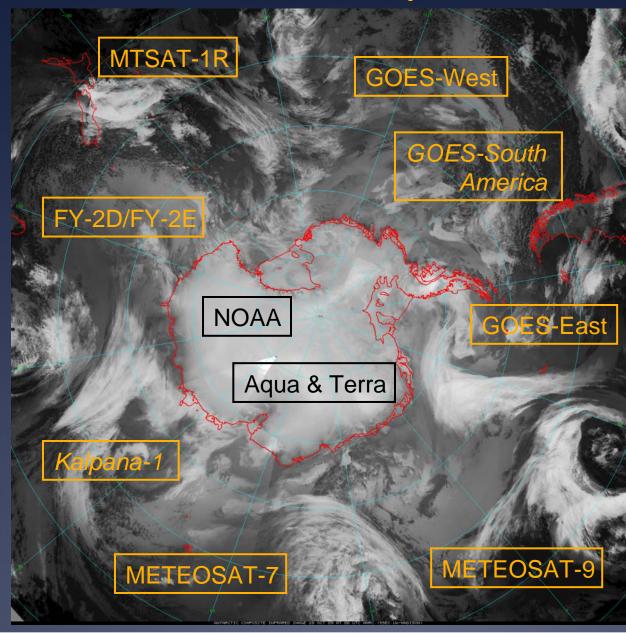
Meteorological Satellite Studie

Polar Satellite Composites

- Antarctic composites (inspired from one-time composites Dr. Charles Stearns)
 - * First(?) to use both geostationary and polar orbiting
 - * Arctic composites came much later...


* Applications:

- * Weather forecasting
- * Cloud mass transport
- * Case studies
- * Glaciology studies
- * <u>Atmospheric motion vectors</u>
- Semi-automated storm tracking
- * Numerical model verification
- Education and public outreach
- * Artists and writers program


Historical Milestone	Date	
First Antarctic Infrared Composite	30 October 1992	
First test Arctic Composite	23 March 2000	
First Antarctic Water Vapor Composite	2 May 2001	
Upgrade of Antarctic Infrared Composite to 5 kilometer resolution	1 November 2002	
Start of experimental Antarctic Visible Composite	1 January 2004	
"Pseudo-color" Antarctic Composites begin	28 February 2005	
First full Arctic Infrared Composite	5 December 2007	
Upgrade to Hourly Antarctic Composites	8 April 2009	
Upgrade to Hourly Arctic Composites	9 March 2010	

Composite Generation

- * Satellite acquisition at SSEC Data Center with additional acquisition at McMurdo Station and Palmer Station (via Internet)
- * "Clean up" of bad lines
- * Remapping imagery
- * Removal of "space" background
- Merge imagery
 Geostationary first
 Polar orbiting last
- * Post processing and distribution

Satellites Incorporated

Antarctic & Arctic Composite

Satellite Sources

- **K** Geostationary:
 - ***** GOES-10, -11, -12
 - * KALPANA-1 (no longer available)
 - * Meteosat-7, -9
 - * FY-2D, FY-2E
 - ★ MTSAT-1R
- Polar orbiting
 - ***** NOAA-15, -16, -*17*, -18, -19
 - * Aqua and Terra
- Spectral Bands:
 - Infrared Window (~11.0 microns)
 - Water Vapor (~6.7 microns)
 - * Experimental (Visible 0.6 microns improvements coming soon)
 - * Shortwave Infrared (~3.9 microns)
 - * Longwave Infrared (~12.0 microns)

Specifications

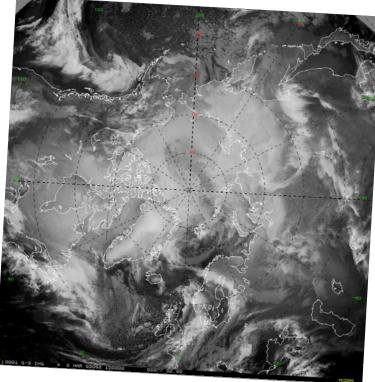
I hourly data!

Used to be 3 hourly data (at synoptic hours 0, 3, 6, 9, 12, 15, 18, 21 UTC)

* Geostationary:

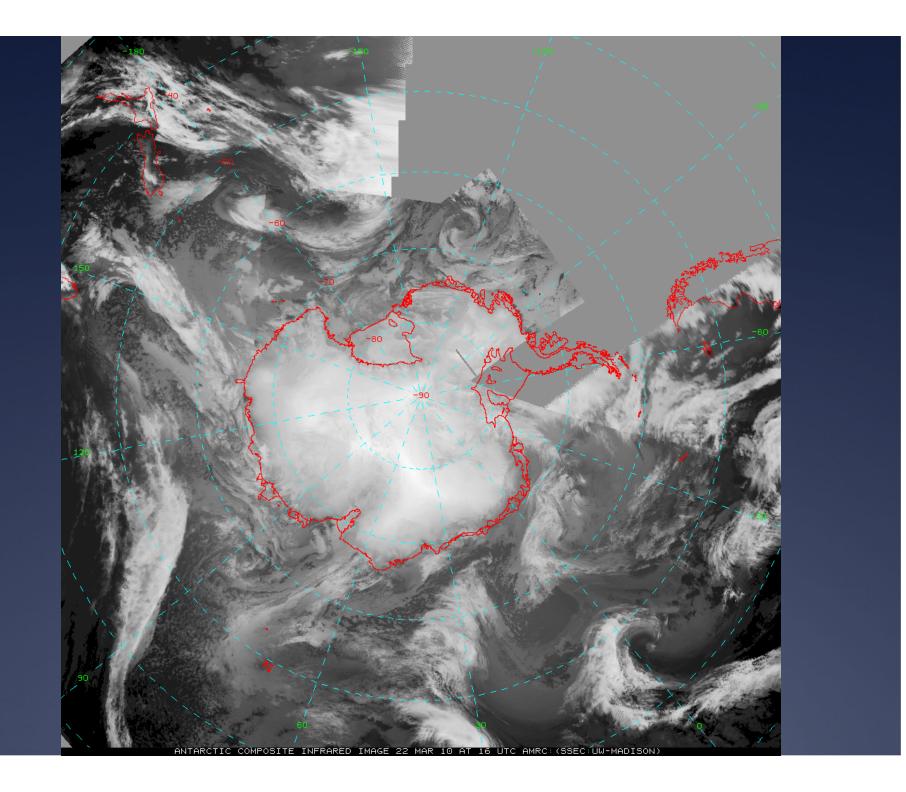
- * Most +/- 15 minutes to the top of the hour
 - Some +/- 50 minutes to the top of the hour
- * Otherwise its left missing...

Polar-orbiting:


- Coverage within whole hour
- 5 kilometer nominal resolution
- Polar stereographic (Antarctic/Arctic)
 - * Centered at South Pole -90°/North Pole 90°
 - Standard/True at -60° South/60° South
 - Standard at 140° West/0° Greenwich down
 - Weather depiction focus

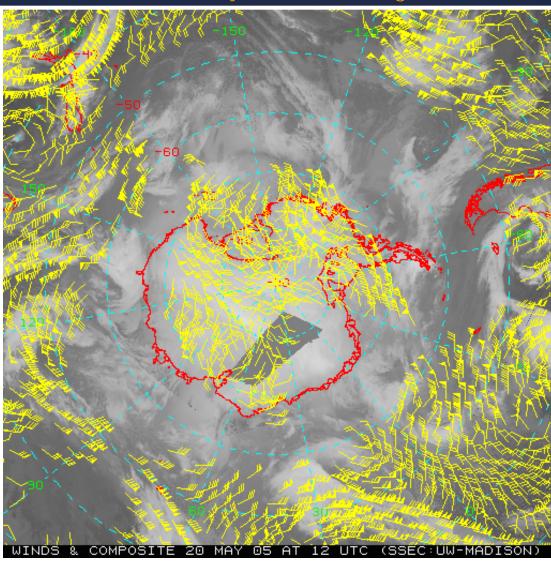
Distribution & Formats

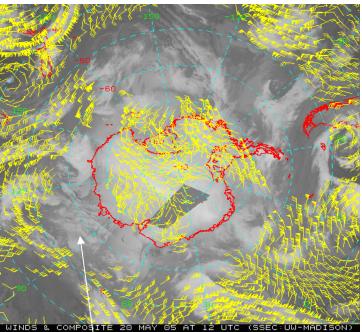
Web: <u>http://amrc.ssec.wisc.edu</u> <u>http://arctic.ssec.wisc.edu</u>


FTP & Rsync: <u>ftp://amrc.ssec.wisc.edu/pub/composite</u>

ADDE: Group: AMRC Machine: amrc.ssec.wisc.edu Group: ARCTIC Machine: arctic.ssec.wisc.edu

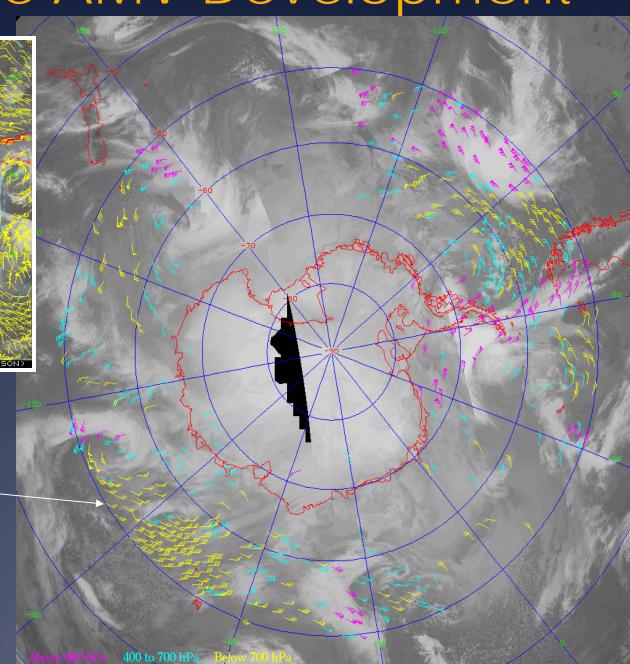
LDM (Antarctic-IDD): ANT.AMRC.Composite.<band>.<date>.<time>.area ANT.AMRC.Composite.<band>.<date>.<time>.jpg ANSP.AMRC.Composite.<band>.<date>.<time>.area ANSP.AMRC.Composite.<band>.<date>.<time>.jpg etc.


Formats: McIDAS AREA, 'netCDF', GIF/JPEG/etc., "flat" file (ASCII, binary), etc.



Sample Application: Atmospheric Motion Vectors (AMV)

Geostationary and Polar-orbiting

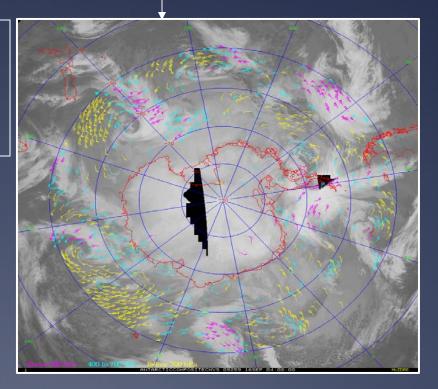


Composite AMV Development

Filling in the _____ Observation Gap

Composite Cloud Motion Vectors (CCMV)

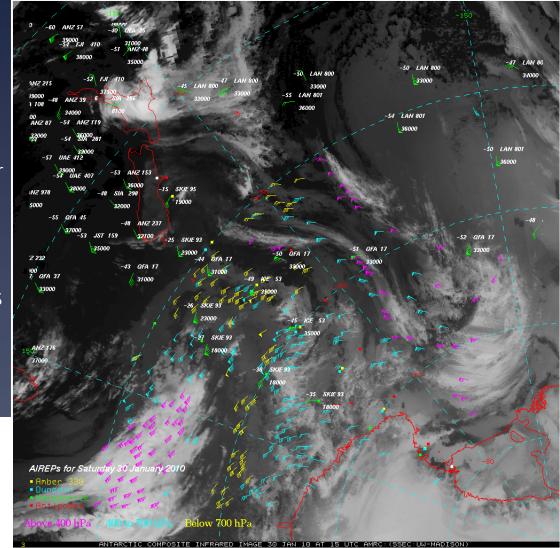
Composite AMV Development


* AMV are being run parallel on two machines with different settings

Take 3 consecutive hourly composites over the Antarctic and input into wind development algorithm (Windco) Post-processing: With and Without Ckcirrus etc., Recursive Filtering (RF) to obtain the best possible height assignment and Quality Indicator (QI) values are calculated. Each vector is given a flag based on RF and QI values(60 vs. 70), and any vectors that surpass threshold are accepted.

Finding targets by calculating local brightness temperature gradients that exceed threshold; 15 (Default) versus 7

Determine height of target by comparing the average temperature of target pixels to the background field; GFS forecast of 6 to 12 hours Sub-vectors are generated between images in a triplet and acceleration check is performed to throw out bad vectors.

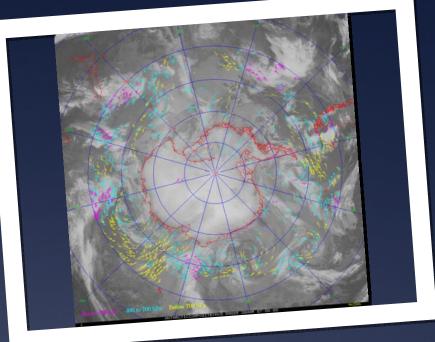

Use background wind field to create search box and find highest correlated gradient point between target and search box

Validation Process

- Run Windco process parallel on two computers: AWS/AMRC. Each computer is running Windco on different settings.
- Retrieve Radiosondes data south of 50° S latitude.
- Retrieve AIREP reports ...
 - ICE = C-17 USAF
 - SKIE = SKIER LC-130 NYANG
 - KIW = KIWI C-130 RNZAF
 - SDN = Australia Airbus
 - SFR = SAFAIR/South African Air
 - LAN = LAN Airlines (Chile)
 - QFA = Qantas Airlines
 - British Antarctic Survey
- Compare AMVs on both runs
- Observations...
 - * Radiosonde: 100 km/50 hPa
 - * AIREPs: 100 km/ 500 meters

>=850 hPa	850> to 500	Above 500
	hPa	hPa
4.89	6.48	9.46
4.37	5.50	7.96
2.80	4.87	6.49
-1.66	-0.35	+0.06
15.49	18.88	33.98
.29	.34	.28
21	135	207
	4.89 4.37 2.80 -1.66 15.49 .29	hPa 4.89 6.48 4.37 5.50 2.80 4.87 -1.66 -0.35 15.49 18.88 .29 .34

AMV Summary & Conclusions


- Antarctic Composites are increased temporally from every 3 to 1 hour. This allows them to be used for the development of Motion Vectors
- AMV/CCMV are validated versus RAOBS and **AIREPS**.
- AMV/CCMV have potential to fill in the observation network, the gap between 60-70°S.
 - Validation indicates much improved quality (especially above 500 hPa) when the ckcirrus routine is removed. However, not seen at 60-70° S
 - Additional validation and sensitivity testing is continuing (QI, DVAL, Target size etc.)
 - Time stamping remains an issue to be resolved in the future. Comparison of MODIS MIX AMVs indicate significant sensitivity with changing cross-time stamps
 - MODIS MIX AMVs and CCMVs are NOT yet ready to be used for model assimilation, but hopefully soon. **Work in progress**.
 - Future consideration and planning of modifying windco includes the tagging of individual targets with the true (pixel) time.

Future Work

- * Additional hourly composites
 * Additional spectral channels
- Trial new combination methods
- * Adding satellites
 - MetOp-A
 - Aqua/Terra (water vapor composites)
- Generate AMVs from Arctic composites
- * Generate winds from water vapor composites?
- * Test compositing techniques for optimal spatial and temporal resolution of all satellites
- Take into account satellite parallax and time of observation into the compositing process
- Modify the wind-derivation software to work with the new composites and metadata information
- Continue validation and trial testing of the compositing and AMV generation process in real-time using NESDIS methods with radiosondes and verification with aircraft (AIREP) observations

mattl@ssec.wisc.edu rdworak@ssec.wisc.edu

Thank you!

http://amrc.ssec.wisc.edu/ amrc@ssec.wisc.edu

This effort is funded by National Science Foundation Office of Polar Programs Grant #ANT-0537827 and #ANT-0838834

GEO/LEO project is funded by the National Oceanic and Atmospheric Administration Grant #NA06NES4400002 as a part of the GOES-R Risk Reduction Program

<u>http://arctic.ssec.wisc.edu/</u> arctic@ssec.wisc.edu

This effort is funded by National Science Foundation Office of Polar Programs Grant #ARC-0713843