

Toward an Autonomously Powered Neutrino Observatory at the South Pole

Ken Ratzlaff
Instrumentation Design Laboratory
The University of Kansas

Moving out from station

Moving out from station

Askaryan Radio Array:

 37 radio receiver clusters spaced at 1.33 km.

- Assigned design specs:
 - 100w per cluster.
 - 3 per power station.
 - "near 24-7" service.
 - "no" rf emissions!
- Autonomous power very desirable. Long term, array will possibly be 10x larger.
- Need AARPs: The ARA Autonomous Renewable Power systems. Turbines a possible component.

AARPs for 2010 Testing

Turbine performance.

• 900 MHz Zigbee.

Insulated box.

System monitor.

 Deployment procedures.

Turbines

- 1-1.5 kw range. May need 2 per site, but this physical size is manageable.
- Selected for apparent ruggedness, availability, manufacturer's data, word-of-mouth.
- Prefer turbines without air flow-through (diamond dust).

- No slip rings (source of rf emissions). If present, they must be removed.
- Turbines to be supplied with tilt-towers.
- No batteries, no charge controller this year.
- Need access to bearings.
- Everything must operate to -80C.

Turbine 1: Raum

- Deployed on 50' lattice tilttower.
- Base: 1" plywood on horizontal timbers.
- "Hinge" built into base. One set of guys added.
- 6"x6"x4' timbers used as deadmen.
- Sask. manufacturer fitted turbine for cold.
- Native design: no slip rings.

Deployment straight-forward

- Tilt-up easy with gin pole & Pisten Bully (after a case of erectile dysfunction.)
- Tower shipping a problem.
- Raum is a "slow starter" but rugged.

Turbine 2: Hummer

- Rugged Chinese turbine.
 Internals well-protected.
- Removed slip rings, changed bearings. (Not built to be opened.)
- Bad tower/tilt procedure; shortened to 50' for tilt-up.
- Tedious guy adjustments.
- Single-phase output; 3-phase preferred.
- Good power output until failure. Turned easily. (Not fully diagnosed.)

Turbine 3 – Bergey XL.1

- Rugged; well-protected internals.
- Slip-rings removed (failed cold-test anyway.)
- Uses tapered bearings easy removal.
- We replaced steel guys with Kevlar.
- Note 3 anemometers & Yagi.

- 60' tower.
- Uses gin pole and pulley.

- Tower goes up smoothly.
- Guy cable adjustments are v. tedious; better procedure in process.
- Turbine turns easily.

System Health Monitor

- Monitors multiple parameters. Sends data w. variances to ICL at 10s intervals.
- Currently consumes
 2W; (line drivers are the killers.)
- One power acq'n module may have experienced a failure.
- Susceptible to wind interference when exposed?

Power Measurement Module

- Hall-effect current sensor – isolated; no voltage drop.
- Rectifier requires large heat sink (0.6V drop).
- Careful attention to studs and crimps.

Anemometer acquisition

Delivers averaged speed, direction, temperature every 10 seconds.

Cable must be shielded.

Power Dump

- Switched loads instead of batteries in 2011.
- Thresholds to enable easy startup and optimize voltage drop for MPP.

Power Instrumentation Box

- Insulation: Polyisocyanurate panels.
- Cu/polyester fabric (Flectron) for up to 50 dB.
- Cu-Be Fingerstock to emi-seal opening.
- Silicone gaskets.

Results from 2011 deployment

- We are comfortable with deployment procedures for 50' to 60' towers with Pisten Bully. RPSC support in the field was excellent. Deadmen worked well, even for vertical pull.
- System Health Monitor worked well -- forms basis for reducing consumption to << 1W. Sensors all work well – probably. (Strange but innocuous behavior in wind.)
- Power Instrumentation Box successful. ~ R30 insulation. Can • be shielded to at least 40db, 100-800 MHz.

- Hummer is out too difficult to prep, erect, examine. (But works v. well at low speed.)
- Zigbee worked well at low power over several km. (Now turned off – don't know how to get authorization.)
- Uncertain about Seoprene (Arctic Flex) cable (8awg). We "love" our pneumatic crimper for 6-12 awg cable.
- The ARA "Test bed" has detected no rf emissions from our turbines!

Some Wind Profile Results

Wind Speed, NOAA data (lower 3); AARPS data (upper 5)

 ARO data and AARP data track (offset in the chart.)

Height Ratio Data

Wind Speed Ratios, Turbine 3

- Consistent with ARO data.
- Will be used for surface roughness estimates.

Power Profile Measurement

Example
 Power
 profile
 from
 Hummer
 on a 50'
 tower.

Major Disappointments

- Optical Fiber from Turbine 3 •
 damaged no real-time
 data. Data will not be
 available until spring.
- Turbine 2 produced loud resonance sounds and in a couple weeks, tail fell off. (Needed more deployment time/people, mechanism for locking blind threads in the field.)
- Turbines 1 and 3 needed optimization of thresholds for switching to get good power data. (Ran out of time.)
 - Infrastructure problems
 - Communication glitches with RPSC
 - Unavailability of connection to #3
 - Security of IceCube security.

SLA Battery Studies

Get a better handle on battery performance at

cold.

 Determine how much power must be devoted to warming the box.

Turbine and Charge Controller Studies

Turbine studies.

 Charge controller studies.

Some rf studies.

 Need to test methods for input power measurement.

Test PV integration.

Zigbee mesh studies

- Set up mesh in an isolated area.
- Test self-healing network capabilities.
- Determine lowest power for normal operation.
- Find the "USAP Frequency Manager" to decide if we can use 900 MHz or 2.4GHz.

AARP System Personnel

- Rob Young, Design Engineer, Instrumentation Design Lab, University of Kansas
- Andrew Wendorff, KU student
- Dan Kennedy, KU student
- Alan Hase, machinist, KU Physics
- Dave Besson, University of Kansas Physics