

National Snow and Ice Data Center Supporting Cryospheric Research Since 1976

LARISSA Glaciology and Early Results from the AMIGOS Stations

Ted Scambos

National Snow and Ice Data Center, CIRES, University of Colorado, Boulder

Ronald Ross Terry Haran

Anika Petach

Avega Systems, Sydney Aus.; NSIDC/CIRES, Univ. of Colorado; Harvard University

Field work supported by NSF-OPP awards 0732921 and 0540915 Remote sensing supported by NASA award NNG06GA69G

LARISSA Project: 2010 AMIGOS, GPS, and Seismic Installations

Control:

Triton ETN-LP Linux computer Campbell CR-1000 data logger INS Spider 5TX-EEC ethernet hub

Communications: NAL A3LA-SA Iridium modem DCB IP6600 router

Scar and Flask Sensors: Vaisala WXT510 weather sensor Apogee SP-212 pyranometers (2) Sony PTZ color camera* Topcon GRS-1 precision GPS* Platinum thermistors (4)*

Site Beta Sensors: Vaisala WXT510 weather sensor Apogee SP-212 pyranometers (2) Campbell SR50A Sonic ranging* Garmin 17-HVS WAAS GPS* Platinum thermistors (17)*

Scar and Flask Power: Flexcharge 20NC12L12F charger BP-340J 40 watt solar panels (3) E31SLDGST Deka 12V batteries (4)*

Site Beta Power: Flexcharge 20NC12L12F charger BP-340J 40 watt solar panels (3) E31SLDGST Deka 12V batteries (3)*

Weather and albedo data from AMIGOS-2, single day

Flask Glacier AMIGOS-3 image set

AMIGOS System camera on Scar Inlet and Flask Glacier: accumulation pole movies

SCAR Inlet: Near-zero net accumulation in 6 months ~0.7 m net accumulation in 6 months

Flask Glacier:

Precision GPS results for AMIGOS -2 Scar Inlet

AMIGOS 2 and 3 Firn Temperature profiles: Scar Inlet near the shelf stability limit; Flask is even warmer

Bruce Plateau AMIGOS System

- Sonic snow height sensor accumulation rate
- Weather data Vaisala system: wind, temp, press, humid
- Albedometer solar power, surface melt onset
- Thermistor string (120 m) mean annual temperature temperature history for past 10-20 yrs.

NO LONGER TRANSMITTING:

SNOW BURIAL RATE ~1m/month

Bruce Plateau 120 m firn thermal profile, March-April 2010

'Ridge Cam' AMIGOS System, for high-resolution images overlooking the glaciers or ice shelves

AMIGOS:

Automated Met-Ice-Geophys. Observing Stations

- Hi-Res Camera three 12 megapixel images, 2x /day surface processes, crevassing, calving
- Weather data Vaisala system: wind, temp, press, humid
- Albedometer solar power, surface melt onset

NOT YET INSTALLED;

REQUIRES HELICOPTER TO INSTALL AND REMOVE 4 Hours Ground Time

Plans for Further Installations in 2011/2012

• Crane Glacier Ice front Hi-Res AMIGOS Glacier AMIGOS Precision GPS

• Flask Glacier Ridge-top Hi-Res AMIGOS

• Leppard Glacier Glacier AMIGOS

Crane Glacier - new AMIGOS and GPS sites in 2013

Thank you

After the collapse... glacier speed-up and drawdown

Punchbowl Glacier

The Larsen B used to be here

Iceberg evolution during drift -

AMIGOS:

Automated Met-Ice-Geophys. Observing Stations

• GPS

- Camera flag lines accum/ablate surface events
- Weather data
- Ice thickness and melt rate didn't work...

Iceberg evolution during drift - Automated station science results

Lots to look at -accumulation mast flag line (barrel) your feet yourself

.. and record the weather and GPS position

Gordon Research Conference, Polar Marine Science, March 25-29, 2007, Ventura, CA

Iceberg evolution during drift - AMIGOSberg disintegration: water

ne Science, March 25-29, 2007, Ventura, CA

Iceberg 'edge-wasting' loss rates - three stages

Scambos et al., 2008 J. Glac.

LARISSA: Larsen Ice Shelf System, Antarctica

3 linked studies:

Marine Geology

E. Domack*, A. Leventer, S. Brachfield, et al.

Cryosphere and Oceans T. Scambos, M. Truffer, E. Pettit, B. Huber L. Thompson and E. Mosley-Thompson

Ecosystems M. Vernet, C. VanDover, C. Smith, , et al.

CRYOSPHERE AND OCEANS:

- Ice core on Bruce Plateau (~400m)
 (L. Thompson, E. Mosley-Thompson)
- Met data and ice geophysics, ('AMIGOS');
 GPR surveys; flowline models and others (T. Scambos, M. Truffer, E. Pettit)
- Ocean circulation, exchange
 (A. Gordon, B. Huber)

LARISSA: how ice sheets, marine geosystems, and the biosphere respond to rapid polar climate change

Iceberg evolution during drift - AMIGOSberg disintegration: water

Saturated firn can initiate a 'disintegration-style' break-up

Scambos et al., 2008 J. Glac.

How a small amount of melt has a magnified effect... (Weertman, 1973)

Other components of a 'disintegration'-style collapse:

- pre-existing crevasses, e.g. from glacier stresses or ice front stresses;
- low compression within the shelf (explains George VI, Amery)
- a surface reservoir of water to fill the as fracture as it deepens (e.g., ponds)

After the shelf was lost, glaciers began to accelerate.

Larsen B Embayment:

A significant speed increase occurred for all glaciers feeding the breakup areas.

No ice speed change was observed in glaciers south of the break-up zone.

Ice shelves - the gatekeepers of mass balance change

Glaciers feeding the Larsen B accelerated and thinned after disintegration of the ice shelf --

MODIS image, November, 2002

Landsat-7 image, February 2003

Study area, and altimetry / bathymetry data sets

SPOT-5 image, 25 November 2006

A brief period of rapid elevation loss ('drawdown'): late 2004 to late 2005

All glaciers in the region of shelf disintegration show major speed and elevation effects; where the shelf remains, there is little change.

Shuman et al., 2010 in prep.

Along-flow elevation difference profiles of the Larsen B glaciers

'Disintegration' style break-up

Not all retreat events are disintegrations

Climate – change driven; rapid increase in surface melting; hydro-fracture.

Above, melt ponds cover the area of subsequent break-up;

Sliver icebergs, ice-front-parallel

At right, blue areas are toppled ice; brown streaks are entrained debris exposed by the break-up.

Larsen B Ice Shelf disintegration, February-March 2002

Mass loss of the Larsen B tributary glaciers and Drygalski Glacier: Total is ~62.3 Gtons

Plus some significant amount (1 to 3 Gt?) from grounded ice that has calved and drifted away

	Grounded ice that calved				Grounded ice losing elevation			
	Area Loss (km²)	Elevation change (m)	Volume Loss (km ³ ice)	Standard Error (km³ ice)	Area (km²)	Elevation change (m)	Volume loss (km ³ ice)	Standard Error (km ³ ice)
Drygalski	0.0	x	0.0	0.0	1015	-15.2	-15.4	5.1
Hektoria/Green	72.8	-79.9	-5.8	0.4	752	-28.9	-21.7	3.8
Evans	11.5	-46.1	-0.5	0.1	266	-33.3	-8.9	1.3
Jorum/Punchbowl	25.1	-39.8	-1.0	0.1	351	-9.0	-3.2	1.8
Crane	33.8	-80.0	-2.7	0.2	470	-28.1	-13.2	2.4
All glaciers			-10.0*	0.7	2853.7		-62.3	14.3
Rate of ice loss (Gt ice /yr)			-2.0*	0.1			-12.5	2.9

Shuman et al., 2010 in prep.

Antarctica Ice Sheet GRACE Mascon Solution 2003-2008

12 14 16 18 20

-6

-4

-2

0

2

4

6

8

10

-20 -18 -16 -14 -12 -10 -8

	GRACE mascon - ICE5G	GRACE mascon - IJ05				
	(Gt / yr)	(Gt / yr)				
000 m	-96 ± 39	-87				
000 m	-8 ± 13	6				
IS	-120 ± 11	-96				
IS	16 ± 24	15				
arctica	-105 ± 26	-80				
of nn.	-43 ± 4	-39 ± 4				
en cm h20 / vr						

Luthke, 2009 GSFC, pers. comm.