### **United States Antarctic Program**

# Polar Technology Conference Traversing in the Antarctic

Paul Thur Traverse Operations Manager Antarctic Support Contract

April 5, 2012





### **Traverse Mission**



- Basic mission is offsetting LC-130 flights to South Pole through delivery of fuel and cargo
  - Offset flights can be used to support Science in other areas of the continent, or more importantly some of these saved flights <u>may not be</u> <u>used at all, which will help to extend the life of LC-130 airframes and</u> <u>save fuel</u>
- South Pole requires ~550,000 gallons of fuel delivered per year; represents ~148 LC-130 missions
- ~30 flights offset per year with one traverse platform
- 2<sup>nd</sup> traverse platform doubles the annual expected offsets to 60+
- Lead-follow autonomous tractor technology should increase offsets to >90 (2 autonomous-assisted round trips + 1 "standard" traverse)
- Near-term fuel delivery requirement via LC-130s will be <u>~40% of pre-</u> traverse levels (220,000 to 250,000 gallons = 59 to 67 flights)
- <u>Delivered fuel increases with subsequent traverses because a packed</u> trail provides either reduced fuel consumption or increased hauling capability









### **Traverse season & team composition**

- Oct. 25 to Feb. 10 Deep-field traverse season ~110 days
- Early limit is fairly rigid due to:
  - On-continent fixed-wing Medevac requirement
  - Early season extreme temperatures on the Polar Plateau (<-40°F until mid Nov.)
- Late limit is more flexible because:
  - Fixed-wing Medevac capabilities are generally on-continent until ~Feb. 18
  - Traverse is far from the Polar Plateau by the time late season extreme temps appear
  - Winterization activities (~2 weeks) can be accomplished by the winter-over crew
- First traverse- 10 crew
  - 1 x Field supervisor
  - 1 x Mountaineer
  - 1 x Shop/maintenance foreman
  - 3 x Heavy equipment mechanic
  - 4 x Heavy equipment operator

- Second traverse- 8 crew
  - 1 x Field supervisor
  - 1 x Shop/maintenance foreman
  - 3 x Heavy equipment mechanic
  - 3 x Heavy equipment operator
- GPR vehicle operation is not required since the first traverse has already covered the trail. The traverse drags a GPR vehicle and has the skills if needed.



# **Operational norms**



- Goal has been two round trips with one traverse; difficult with current operations
- Planned round trip traverse is ~58 days
  - 30 days Southbound
  - 7 days turn-around activities at South Pole
  - 21 days Northbound
- SPoT1 in '12 '13 = 57 days (31, 7, 19)
- SPoT2 in '12 '13 = 55 days (29, 7, 19)
- Turn-around maintenance between traverses could be up to 2 weeks (9 vehicles + 2 generators + 1 freezer unit per traverse)
- Traverse w/GPR travels at 7 mph maximum
- Heavily loaded traverse w/o GPR travels ~8 10 mph
- 10 mph is maximum even for lighter Northbound traverses to minimize wear-and-tear on sleds, equipment, and personnel



## **Fleet Composition**



- Each traverse platform has 4 Caterpillar and 4 Case agricultural tractors, 1 snow-grooming type vehicle used for crevasse detection using GPR, and 2 generators
- Fuel usage varies, but general planning estimates are ~28 gallons per mile (gpm)
- 1<sup>st</sup> traverse platform support modules (2 tractors req'd):
  - Kitchen/berthing module
  - Power/ablution module
  - Freezer unit
  - Tool shed
- 2<sup>nd</sup> traverse platform support modules
  - Berthing module
  - Kitchen/ablution module
  - Power/freezer module
  - Tool shed

(2 tractors re'd):



## **Fleet Composition, continued**



- Case tractors 3.46 gpm heavily loaded / 2.26 gpm lightly loaded
  - ~25,000 to ~29,000 lbs drawbar pull
  - Pros- greater drawbar pull, 4 tracks pulling means greater power in turns/fewer immobilizations, lower tractor base price
  - Cons- lengthy end-of-day cleaning process, higher operating costs
- Caterpillar tractors- 2.95 gpm heavily loaded / 1.94 gpm lightly loaded
  - ~25,000 lb
  - Pros- virtually no end-of-day cleaning, lower operating costs
  - Cons- higher base tractor price
- Pisten Bully 100- ~1 gpm
- Prinoth BR350- ~1 gpm
- Modifications include Arctic seals and fluids, plug-in heaters, stand-alone heaters (Espar), upgraded compartment enclosures, double-pane windows, and bulldozer blade, crane, and winch attachments
- Generators, 2 per traverse- not running while moving, each traverse runs one generator about 13 hours/day, season average is ~1 gpm







1,030 miles 27- McMurdo Ice Shelf 621- Ross Ice Shelf 88- Leverett Glacier 296- Polar Plateau





![](_page_9_Picture_1.jpeg)

1,030 miles 27- McMurdo Ice Shelf 621- Ross Ice Shelf 88- Leverett Glacier 296- Polar Plateau

![](_page_9_Picture_4.jpeg)

#### **Traverse route**

![](_page_10_Picture_1.jpeg)

- Several incarnations of a traverse project through the 80s & 90s, Proof-of-Concept Project took 4 years to get to South Pole ('02 – '06)
- McMurdo Shear Zone
  - CRREL and John Wright's team spent the summer of '02 '03 remediating the 3.5 mile trail across the Shear Zone (same trail in-use today, ~40 crevasses)
  - CRREL assists on initial GPR survey assessment each year
  - Blasting and filling of 2 to 3 crevasses each year is required prior to crossing
  - McMurdo Ice Shelf side moves ~2.3'/day (1.45 mi downstream in 9 yrs)
  - Ross Ice Shelf (RIS) side moves ~3.75'/day (2.37 mi downstream)
  - Trail length has increased by 0.31 mi
  - Eventual requirement to move back upstream
- Shoals of Intractable Funding (Shoals area)
  - Area where the Reedy Glacier outflow merges with outflow from other glaciers
- Leverett Glacier
  - Gradual climb with no major crevassed areas to cross
  - Traverse uses a narrow fleet formation for the entire length of the glacier
  - Some areas require shuttling of loads (~10% grade headwall and regions of scouring/reduced traction)

![](_page_10_Picture_17.jpeg)

![](_page_11_Figure_0.jpeg)

![](_page_11_Figure_1.jpeg)

![](_page_11_Picture_2.jpeg)

Wright, J., unknown document

![](_page_12_Picture_0.jpeg)

![](_page_13_Picture_0.jpeg)

![](_page_14_Figure_0.jpeg)

![](_page_15_Picture_0.jpeg)

**SPT-18** 142° 12.851' W 86° 02.172' S

6,903' elevation gain 87.66 miles

![](_page_15_Picture_2.jpeg)

Scott Glacier

![](_page_15_Picture_3.jpeg)

![](_page_15_Picture_4.jpeg)

### **Traverse route characteristics**

![](_page_16_Picture_1.jpeg)

- Route conditions vary greatly along the 1,030 mile route
  - Dornick region- short height (1' 2'), short wavelength (3' 4')sastrugi with soft snow surrounding them to give the appearance of a smooth surface. This terrain is extremely rough on equipment; short wavelength drifts cause a slamming motion as the vehicles and sleds pass over the crest.
  - RIS swamp- several hundred miles of soft snow that can cause immobilizations (6" – 12" ruts)
  - Lakes district- area on approach to the base of the Leverett that is hard-packed snow/ice
  - Leverett headwall- heavy snow accumulation (>2' 3'/yr)
  - Sastrugi National Park- tall (4' 5'), long wavelength (15' 20'+) sastrugi
  - Plateau swamp- several hundred miles of soft snow (>12" ruts)

![](_page_16_Picture_9.jpeg)

![](_page_17_Picture_0.jpeg)

### **Statistics- Deliveries and flights offset**

| Year              | Fuel<br>delivered<br>(lbs) | Cargo<br>delivered<br>(lbs) | Total Lbs<br>delivered | Flights<br>Offset<br>(ACL=26<br>k lbs) | Fuel<br>unburned<br>by LC-<br>130s (gal) | Traverse<br>fuel burned<br>(gal) | Actual fuel<br>saved (gal) | Traverse efficiency =<br>lbs delivered / lbs<br>burned | LC-130 efficiency =<br>lbs delivered / lbs<br>burned |
|-------------------|----------------------------|-----------------------------|------------------------|----------------------------------------|------------------------------------------|----------------------------------|----------------------------|--------------------------------------------------------|------------------------------------------------------|
| '05 - '06         | -                          | 218,465                     | 218,465                | 8.4                                    | 35,408                                   | 27,273                           | 8,135                      | 1.14                                                   | 0.88                                                 |
| '06 - '07         | No traverse activity       |                             |                        |                                        |                                          |                                  |                            |                                                        |                                                      |
| '07 - '08         | 56,343                     | _                           | 56,343                 | 2.2                                    | 9,132                                    | 39,033                           | (29,901)                   | 0.21                                                   |                                                      |
| '08 - '09         | 805,175                    | 128,570                     | 933,745                | 35.9                                   | 151,339                                  | 72,212                           | 79,127                     | 1.85                                                   | in the second                                        |
| '09 - '10         | 662,382                    | 39,368                      | 701,750                | 27.0                                   | 113,737                                  | 62,271                           | 51,466                     | 1.61                                                   |                                                      |
| '10 - '11         | 667,240                    | 1                           | 667,240                | 25.7                                   | 108,144                                  | 60,881                           | 47,263                     | 1.57                                                   | and the second                                       |
| '11 - '12- SPoT 1 | 329,756                    | 83,030                      | 412,786                | 46.6                                   | 196,372                                  | 69,629                           | 126,743                    | 0.85                                                   | State State                                          |
| '11 - '12- SPoT 2 | 588,476                    | 54,755                      | 643,231                | 24.7                                   | 104,253                                  | 38,761                           | 65,492                     | 2.37                                                   |                                                      |
|                   | Ttl LC-130 Flights Offset  |                             |                        | 170.5                                  | Fuel saved                               |                                  | 348,326                    | 1.39                                                   | Combined '11-'12                                     |
|                   |                            | the state                   | the second             | 1                                      |                                          |                                  | 1                          | 1.6                                                    | 4-year avg                                           |

![](_page_17_Picture_3.jpeg)

## Accomplishments

![](_page_18_Picture_1.jpeg)

- Moved >3.6M lbs to / from deep field locations
- Supported the installation of a Science project on the RIS via traverse in '10 – '11 that would have been cancelled because of weather that did not allow flights, but was suitable for traversing
- Supported Science on the Polar Plateau and RIS each year with depot'ing / pick-up of cargo
- Established and maintained fuel depots of 27,000 gallons on the RIS (in steel tanks) to extend the range of fixed-wing aircraft
- Partially closed the AGAP South camp via ground instead of with LC-130s, ~900 mi round trip (9,600' – 11,500'), represents ~ 34 flights
- Established a traverse route to a future drilling camp on the Whillans' Ice Stream on the RIS

![](_page_18_Picture_8.jpeg)

## **Specific challenges**

![](_page_19_Picture_1.jpeg)

- Minimizing delays along the trail (immobilizations & general problems)
- High molecular weight polyethylene (HMW) sleds- experienced breakages of plastic sheets in the field during each traverse
- Fuel bladder reliability
- Inefficiency of steel skis (high cost and high weight) has driven innovation
  - Steel fuel tanks —> plastic sleds and flexible transport bladders
  - Steel skis under buildings —> platforms with an air-cushion ride
- Development of a suitable cargo-hauling platform (air-cushion ride)
  - Requires a flexible interface between the HMW sled and the cargo to be carried
  - Tried off-the-shelf boat pontoons in '10 '11; local field trials were promising, but pontoon seams failed after 100 miles of field use
    Field tests of 1,600+ miles of a custom pontoon system in '11 '12 proved successful; no failures and no air leaks for the entire field season

![](_page_19_Picture_11.jpeg)

#### **Future plans**

![](_page_20_Picture_1.jpeg)

- Deployment of the Whillans' Ice Stream Subglacial Antarctic Research Drilling (WISSARD) project to the RIS in '12 – '13 and '13 – '14
- Attempt to open West Antarctica in '14 '15 (McMurdo to WAIS Divide via the WISSARD traverse route)
- Attempt 2 round-trips with one traverse platform in '13 '14 using existing operating techniques

- Incorporate air-cushion technology into support sleds and cargo sleds
- Continue to make technological advances in our flexible sleds
- Implement autonomous lead-follow technology on one traverse platform
  - Testing in '12 '13 and '13 '14, hopefully full implementation in '14 '15
  - Will allow traverse to travel ~19 hours per day w/ same staffing levels
  - Round trip traverse time should go from 58 down to 38 days, removing much of the risk from a tight timeline and allowing non-rushed turn arounds
  - Makes 2 round-trips in one season with one platform much more likely

![](_page_20_Picture_12.jpeg)

![](_page_21_Picture_0.jpeg)

# **Opening of West Antarctica**

![](_page_21_Figure_2.jpeg)