Development of a Remotely Operated Underwater Vehicle for Oceanographic Access Under Ice

Presented at the 8th Annual Polar Technology Conference, 3-5 April 2012

Andrew Bowen¹, Dana R. Yoerger¹, Christopher German², James C. Kinsey¹, Louis L. Whitcomb^{1, 3}, Larry Mayer^{1,4}

¹Department of Applied Ocean Physics and Engineering ²Department of Geology and Geophysics Woods Hole Oceanographic Institution ³Laboratory for Computational Sensing and Robotics Johns Hopkins University ⁴Center for Coastal and Ocean Mapping University of New Hampshire

Woods Hole Oceanographic Institution

World's largest private ocean research institution

~900 Employees, 143 Scientific Staff \$160M Annual Budget

- Biology
- Chemistry
- Geology
- Physical Oceanography
- Engineering
- Marine Policy

Deep Ocean Oceanography: The D.S.V. Alvin 4500m Submersible

Ph.D. Student James Kinsey

Crew: Depth: Endurance: Speed: Mass: Length: Power: Life Support: Dives: Passengers: 3 = 1 pilot + 2 scientist 4500m (6,500m soon) 6-10 Hours

1 m/s 7,000 Kg 7.1m 81 KWH

Life Support:72 Hours x 3 PersonsDives:>4,700 (since 1964)Passengers:>14,000 (since 1964)

Jason II ROV

Specifications:

Size:	3.2 x 2.4 x 2.2 m			
Weight	3,300 kg			
Depth	6,500 m			
Power	40 kW (50 Hp)			
Payload:	120 Kg (1.5 Ton)			
First Dive:	2002			
Dives:	>600			
Dive Time: >12,500 Hours*				
Bottom Time: >10,600 Hours*				
Longest Dive: 139 Hours*				
Deepest Dive: 6,502 m*				
Distance: >4,800 km*				
* As of Feb, 2012				

Electric thrusters, twin hydraulic manipulator arms.

The Autonomous Benthic Explorer (ABE)

Vent discoveries in the Lau Basin (near Fiji), Southern Mid-Atlantic Ridge, Southwest Indian Ridge.

(German, Yoerger, et al, 2004)

11,000 Meters an Easier Way

• A Hybrid cross between autonomous and remote-controlled undertwater vehicle

- Untethered autonomous underwater vehicle (AUV) for mapping
- Tethered remotely operated vehicle (ROV) for close inspection, sampling and manipulation

• New Class of vehicle intended to offer a cost effective solution for survey/sampling and direct human directed interaction with extreme environments through the use of new technologies

The Nereus Hybrid Remotely Operated Vehicle

New Technologies Enabling the Nereus System Design

Ceramic Buoyancy and Pressure Housings

Low Power High Quality Imaging/Lighting

Low Power Capable Manipulators

Micro-Fiber Tether System

Energy Storage

Nereus 2009 Mariana Expedition

Bathymetry of the Southern Mariana Islands Region

Guam

Dive 008: 3500 m 12N58.80 145E11.75

Dive 007: 880 m 13N36.75 144E43.00 Dive 009: 6500 m 13N12.00 146E00.00 (mud volcano)

Challenger Deep 35,630 ft.

> Dive 010: 9050 m 12N59.50 146E00.00

Dive 011: 10900 m 11N22.10 142E35.48 Dives 012 and 014: 10900emcal exaggeration = 5x 11N19.59 142E12.99

Dive 015: 3000 m 12N42.00 143E31.50 Toto Seamount

Nereus Dive 11 to 10,903 m Depth

Nereus Sampling

Nereus Sampling

Light Fibre Tether Concept

- High bandwidth (GigE) communications
- Unconstrained by surface ship
- Operable from non-DP vessels

Problem: Conventionally Tethered ROV Operations from Icebreaker in Permanent Moving Ice

Icebreaker Constrained to Move with Moving Ice Pack

5

Steel Armored Cable

- Depressor/Garage

ROV Footprint of Operations: Small (~500 m) Under Ship, Moving with Ice

Conventional ROV

Solution: Light-Tethered Nereid Operations from Icebreaker In Permanent Moving Ice

Steel Armored Cable
Depressor/Garage

× 317

Light Fiber-Optic Tether

PROV Footprint of Operations:Large (~20 km) and Decoupled From Ship

The Under-Ice Scientific Imperative

- Near-Ice Inspection and Mapping
- Boundary Layer Investigations
- Grounding Line Inspection
- Sediment Sampling
- Ice Shelf Cavity Physical Oceanographic Mapping
- Instrument Emplacement*

Under-Ice Vehicle Systems

- Specialized hybrid AUV/ROV systems
- Conventional AUVs
- Conventional ROVs

Sub-Ice ROVer (SIR)

For through-ice-shelf deployment via ~70-75 cm bore holes. Max diameter 55 cm in "folded" configuration. Unfolds into ROV configuration. Under development. 1500 m. Missions: Optical imaging, acoustic imaging, PO,

Vogel et al. (2008), "Subglacial environment exploration – concept and technological challenges for the development and operation of a Sub-Ice ROVer (SIR) and advanced sub-ice instrumentation for short and long-term observations", In *Proceedings IEEE/OES Autonomous Underwater Vehicles*

SIR: Field Sites

Submersible Capable of under Ice Navigation and Imaging (SCINI)

Cazenave et al. (2011), "Development of the ROV SCINI and deployment in McMurdo Sound, Antarctica," Journal of Ocean Technology 15 cm diameter fordeployment through 20 cmholes drilled in sea ice.300 m depth rated.

Missions: Optical imaging, acoustic imaging, and PO.

SCINI: Logistics

Figure 12: Walking to the survey site from the Becker point field camp. The entire SCINI ROV setup weights less than 350 kg and can be person-hauled by three or more people, on two sledges.

Cazenave et al. (2011), "Development of the ROV SCINI and deployment in McMurdo Sound, Antarctica," Journal of Ocean Technology

SCINI: McMurdo Sound

Figure 11: The ROV navigation tracklines from transects surveying the seafloor disturbance near one iceberg in Bay of Sails. Dots off the transect lines indicate bad navigation returns, demonstrating the importance of frequent returns to successfully maintain heading. Iceberg outline at sea ice level was obtained with a handheld GPS unit. The depth of the transects was between 30 m and 38 m.

Cazenave et al. (2011), "Development of the ROV SCINI and deployment in McMurdo Sound, Antarctica," Journal of Ocean Technology

Micro-Subglacial Lake Exploration Device (MSLED)

8 cm x 70 cm for deployment through bore holes drilled in ice.

1,500 m depth rated. Camera, CTD Fiber-optic tether 2 hour endurance

Missions: Optical imaging and PO.

A. Behar (2011) Micro Subglacial Lake Exploration Device (MSLED). Eighteenth Annual West Antartic Ice Sheet Initiative (WAIS) Workshop, 2011

Theseus AUV

1.27 m x 10 m for longendurance fiber-optic cable deployment.
8,000 kg
1,300+ km range
2,000 m depth rated.

Fiber-optic tether deployment.

More recent versions of Theseus developed by ISE for Canadian UNCLOS Arctic bathymetric survey operations.

Stone Aerospace Endurance

Table 1: ENDURANCE vehicle specifications

Dimensions	Ellipsoid major axis (diameter): 2.13 m	
	Ellipsoid minor axis (height): 1.52 m	
Mass	1.3 t including science payload	
Depth rating	1000 m (excluding payload)	
Onboard power	2×2.5 kW h lithium-ion rechargeable	
	battery packs	
Thrust	6 electric thrusters @ 110 N nominal thrust	
Service range	5 km	
Maximum	$0.3 \mathrm{m/s}$	
transit speed		
Cruise speed	0.24 m/s	
Onboard in-	Honeywell inertial measurement unit (IMU)	
strumentation	RDI Doppler velocity log (DVL)	
	2 Paroscientific pressure depth sensors	
	32 Imagenex 100 m sonars	
	24 Imagenex 200 m sonars	
	Imagenex DeltaT multi-beam sonar	
	Sonardyne inverted ultra-short baseline	
	$(USBL)$ transceiver \searrow	

Richmond et al. (2011), "Sub-ice Exploration of an Antarctic Lake: Results from the Endurance Project UUST'1"

Stone Aerospace Endurance

Stone et al. (2009), "Sub-ice exploration of West Lake Bonney: Endurance 2008 mission," In Proceedings UUST'09. Richmond et al. (2011), "Sub-ice Exploration of an Antarctic Lake: Results from the Endurance Project", UUST'11,.

Stone Aerospace Endurance

Autosub 3

400 km range 1,600 m depth 7 m x 1 m 3000 kg Missions: Acoustic survey and PO survey.

Jenkens et al. (2010), "Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat", Nature Geoscience, June 2010.

Autosub 3

Jenkens et al. (2010), "Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat", Nature Geoscience, June 2010. (Results of January 2009 operations from R/V N. B. Palmer)

Ice Cold Unit for Biological Exploration (IceCube) ROV

Modified Deep Ocean Engineering Phantom S2 – 450 m depth rated, 100 kg

- Instruments
- 1. CTD (uCTD, FSI)
- 2. Fluorometer (FLNTU, Wetlabs)
- 3. HD Camcorder (HD-SR12, Sony)
- 4. 2-L discrete water sampler
- 5. 20-position indexing suction sampler
- 6. Scanning sonar (1071, Mesotech)
- 7. Continuous water pumping system (not shown) 8. Ice scraper
- 9. Flow meter (2031H, General Oceanics, Inc.)(not shown) 10. 4-port serial port multiplexer (STS4, Perle)(not shown)
- 11. High-speed router (3241, Patton Electronics)
- 12. Custom tool sled
- 13. Plankton Sample Net

Fig. 2. Partial view of the tabular iceberg C-18a investigated by the ROV in 2009. Photo credit: Rob Sherlock.

PROV Concept of Operations

Mission:

- Penetrate under **fixed ice** up to 20 km as a tethered vehicle while supporting sensing and sampling in close proximity to the under-ice surface
- Return safely to the ship

Notional Concept of Operations:

- Install acoustic Nav/Comms as required near ice-edge
- Deploy from vessel at ice edge as tethered system
- Transit to ice-edge and begin survey activities under-ice to the maximum range of the tether.
- Complete mission and return to the vessel as an AUV and recover onboard in open water

Use Case 1: Near-Ice Inspection and Mapping

Use Case 2: Boundary Layer Investigations

Use Case 3: Grounding Line Inspection

Use Case 4: Sediment Sampling

Use Case 5: Ice Shelf Cavity Physical Oceanographic Mapping

Use Case 6: InstrumentDeployment/Recovery

*

Design Parameters

- Bathymetry -> Depth rating
- Ice Draft -> Maneuverability/Sensing
- Water column structure -> Need for, and capacity of VBS
- Circulation and Tides -> Minimum speed
- Sea-Ice and Sea State -> LaRS complexity
- Phenomena -> Special design considerations
- State of Knowledge -> Conservatism in design
- Logistics -> Special design considerations, field-planning
- Regions Studied:
 Antarctic Ice Shelves
 Greenland Glaciers
- Assumptions:

Ship-based, open-water launch/recovery, sub-type for through-ice deployment

Design Constraints: Antarctica

- Bathymetry -> Depth rating: 2000 m
- Ice Draft -> Maneuverability/Sensing: mission-driven/??
- Water column structure -> Need for, and capacity of VBS: mission-driven, potential for creative solutions
- Circulation and Tides -> Minimum speed: 0.5 m/s
- Sea-Ice and Sea State -> LaRS complexity: **simple**, AUV-like
- Phenomena -> Special design considerations: minimize entrained volume, thermally couple as much as possible, detect ?, pre-launch washdown
- State of Knowledge -> Conservatism in design: reliability-driven
- Logistics -> Special design considerations: What can be learned from small, proxy vehicles?

Concepts

Conventional

Crab

Specifications	Range	20 km horizontal excursion
	Air Weight	1800 kg
	Depth Rating	1000 m
	Battery	16 kWhr lithium-ion
Navigation	Inertial	Phins INS
	Acoustic	LF 1000 m range up/down altimetry;
		up/down ADCP/DVL; LF (3.5 kHz)
		homing; imaging sonar for obstacle
		avoidance
Communication	Tether	Fiber-optic Gb Ethernet, 20 km
	Acoustic	LF (3 kHz) 20-300 bps for ship to
		vehicle; HF (10-30 kHz) 300 bps for
		vehicle to sensor; vehicle to vehicle
Imaging	Acoustic	Reson 725 multibeam or Mesotech 675
		profiling (upward-looking)
	Optical	Real-time color HD video; high
		resolution digital camera; LED lighting
Chemical/Physical		Seabird CTD; pH; micro-structure
Sensors		probes on deployable sonde
Biological Sensors		Optical backscatter; Photosynthetically
		Active Radiation (PAR); Chlorophyll;
		Turbidity; Dissolved Oxygen
Auxiliary payload allowance		20 kg; 500 Wh

Fiber Tether Sink-rate Simulation

Acoustic Communications and Navigation

Short range, 10 kHz

- ITC 3013 (hemispherical coverage)
- Use for 5-8 km horizontal and similar for slant range in deep water, depending on propagation conditions.
- Data rate/efficiency 100-1000 bps, 4-40 bits per joule.

Long range, 3 kHz

- ITC 2002 (slight toroidal beam-pattern)
- Use for up to ~20 km, path dependent performance.
- Data rate/efficiency: ~50-100 bps, 2-4 bits per joule.

1930

Supercooled Water and Frazil Ice

 Formed in supercooled water, 0.01-0.03 C below freezing: polynyas, water-layer interfaces, glacial interfaces, brinicles

Grease le

Figure 1 Photograph through crossed polaroids of a suspended solution of feasible crystals; the photograph covers 25 mm in the vertical (from Martin & Kauffman 1981).

http://www.bbc.co.uk/nature/15835017

Design for Reliability/ Fault-Tolerant Control/Design

Photo courtesy S. McPhail, NOC

ABE and Sentry failures in 350 dives

Mobility/Autonomy Core

Come-Home Capability

- Act upon loss of tether
- Timeout before Bailout
- Standown
- Home Acoustically
- Breadcrumbs
- Deadman Initiation
- Constant Depth
- Top-Follow
- Bottom-Follow
- Visualize Bailout
- Recall Election

Nereus References

- C. R. German, A. Bowen, M. L. Coleman, D. L. Honig, J. A. Huber, M. V. Jakuba, J. C. Kinsey, M. D. Kurz, S. Leroy, J. M. McDermott, B. Mercier de Lépinay, K. Nakamura, J. S. Seewald, J. L. Smith, S. P. Sylva, C. L. Van Dover, L. L. Whitcomb, D. R. Yoerger, Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise, In *Proceedings of the National Academy of Sciences*, 2010 107 (32) 14020-14025; July 21, 2010, doi:10.1073/pnas.1009205107. http://www.pnas.org/content/107/32/14020.full
- 2. Whitcomb, L.L.; Jakuba, M.V.; Kinsey, J.C.; Martin, S.C.; Webster, S.E.; Howland, J.C.; Taylor, C.L.; Gomez-Ibanez, D.; Yoerger, D.R.; , "Navigation and control of the Nereus hybrid underwater vehicle for global ocean science to 10,903 m depth: Preliminary results," In *Proceedings of the 2010 IEEE International Conference on Robotics and Automation*, vol., no., pp.594-600, 3-7 May 2010. <u>https://jshare.johnshopkins.edu/lwhitco1/papers/2010_ICRA_Nereus.pdf</u>
- 3. Living where the sun don't shine: A Caribbean cruise may unlock one of biology's oldest secrets—both on Earth and elsewhere in the universe, *The Economist*, October 8, 2009. <u>http://www.economist.com/node/14585735</u>
- 4. Andrew D. Bowen, Dana R. Yoerger, Chris Taylor, Robert McCabe, Jonathan Howland, Daniel Gomez-Ibanez, James C. Kinsey, Matthew Heintz, Glenn McDonald, Donald B. Peters, John Bailey, Eleanor Bohrs, Tomothy Shank, Louis L. Whitcomb, Stephen C. Martin, Sarah E. Webster, Michael V. Jakuba, Barbara Fletcher, Chris Young, James Buescher, Patricia Fryer, and Samuel Hulme. Field trials of the Nereus hybrid underwater robotic vehicle in the Challenger Deep of the Mariana Trench. In *Proceedings of IEEE/MTS Oceans 2009*, Biloxi MS, October 26-29, 2009. https://jshare.johnshopkins.edu/lwhitco1/papers/2009_Oceans_Nereus.pdf
- Sandipa Singh, Sarah E. Webster, Lee Freitag, Louis L. Whitcomb, Keenan Ball, John Bailey, Chris Taylor. Acoustic communication performance in sea trials of the Nereus vehicle to 11,000 m depth. In *Proceedings of IEEE/MTS Oceans 2009*, Biloxi MS, October 26-29, 2009. https://jshare.johnshopkins.edu/lwhitco1/papers/2009 Oceans Nereus Acomm Performance.pdf
- 6. Nereus Project Web Site: http://www.whoi.edu/page.do?pid=10076
- 7. NSF Press Release: <u>http://www.nsf.gov/news/news_summ.jsp?cntn_id=114913&org=NSF&from=news</u>
- 8. WHOI Press Release: http://www.whoi.edu/page.do?pid=7545&tid=282&cid=57586&ct=162

Conclusions

- More detailed exploration under permanent fixed ice will be enhanced by the Nereid Under Ice vehicle and lead to important new knowledge difficult to gather with autonomous systems having limited bandwidth communications
- Both operational and scientific techniques developed during this project should be of interest to those contemplating missions on other planets
- Teaming of human explorers to robotic tools over high bandwidth links promises most efficient of resources

