EarthScope's Transportable Array

TA Engineering Team Bob Busby Allan Sauter Patrick Bastien

Polar Technology Workshop Naval Academy Annapolis Md 2-4 Apr 2013

Proposed Project

Outline

Introduction to EarthScope's Transportable Array (TA)

Describe the deployment plans for Alaska and Yukon

Concept of Operations

Seismic Station Design Sensor Emplacement Power and Enclosures Data Communications

Opportunity for collaborative Science

Introduction to the TA

Station Design- tank vaults

http://www.passcal.nmt.edu/taweb

Freeman Engineered Products HDPE custom rotomolded tank

\$1200

105 kg

1.1m diameter 2.3m height

Tomography Before TA

▲ Figure 1. (A) Model made by piecing together local tomography studies from Humphreys and Dueker (1994) and inverting with global data set (after Dueker *et al.* 2001). (B) Global *S*-wave model from surface wave diffraction (Ritzwoller *et al.* 2002). (C) Global *P*-wave model using finite frequency kernels (Montelli *et al.* 2004). (D) Global *S*-wave travel-time model (Grand 2002).

7

Tomography Burdick et al. 2012

TA Rolling Deployment

Distributed real-time sensing array

March 11, 2011, NEAR EAST COAST OF HONSHU, JAPAN, M=8.9

Distributed real-time sensing array Beam Formed back projection

10

Atmospheric Acoustic Transportable Array • Acoustic – seismic coupling

Noise induced on vertical and horizontal

- Wide application of atmospheric data
 - Meso-scale atmosphere variation
 - Acoustic energy propagating in the seismic channels atmosphere <u>http://www.iris.edu/dms/nodes/dmc/specialevents/2013/02/19/chelyabinsk-russia-bolide-meteor/</u>

Project Proposal Status

- EarthScope funded in 5
 year increments
- Currently in Year 10
- Proposal submitted for 2013 – 2018 (for funding to start in October 2013)
- Engineering trials and design supported under current funding.

Budget and Supporting Documentation

TA in Alaska / Yukon

- ~300 sites
- 85 km spacing
- Broadband Seismometers
 Infrasound, pressure
 - Some met packages
- Communications
- fully deployed 2017

www.usarray.org/alaska

Concept of Operations

- Operations Base in Anchorage
- Spoke from village hubs
- Helicopter lift of drill rig

Initial Site Planning

earth

Potential TA Sites in Yukon Canada

0

0

00

0

0 00 0

0

00

0 0

0

0

0

Δ

2013 stations in Canada

Δ Planned 2013 stations
 Δ Existing Stations

Paulatuk Sachs Harbor Barrow AK Middleton Island

Future Locations: 6 Sites in BC 9 Sites in NWT 43 Sites in Yukon

TA Site Areas

16

Project Schedule

Number of Stations Deployed

- Schedule balances roll-up in east with roll-out in Alaska
- Alaska field schedule is seasonally driven
 - Late spring early fall

٠

Schedule provides longer operational window in AK

- Additional time for FA experiments to get
 underway
- Additional time for Alaska organizations to assemble plans to make selected stations permanent or collaborative science.

Station Design Aspects

- Sensor emplacement to achieve highest quality data
- Power strategies to balance weight, reliability, complexity
 - Solar panels, advanced chemistry batteries, fuel cells
- Communications scaled by volume and latency vs. cost

Post Hole Broadband Seismometers

Toolik Lake Field Station, North Slope Alaska

Sensor emplacement

High quality long period Seismic data requires stable emplacement of the \$20k 3 axis sensor (<1Watt)

In rock outcrops, a diamond coring machine can create 6" diameter holes to depths of 1.8m in an hour. In permafrost soil & silt, coring is also possible. Portable auger and air hammer drills are under test. Design goal is <500kg.

Motivation: Alaska, all equipment designed for transport in fixed wing aircraft or helicopter.

TA.POKR experiment

20

Eagle Plains Yukon

http://www.youtube.com/watch?v=JTTv6wqCqco

Oct 13, 2012 complete

21

Basic Description of Buried Sensor Design for AK

TOLK Seismic Station

- Sensor: 3 component Broadband seismometer & auxiliary sensors
- Datalogger & local data storage
- Power & data telemetry

Antennas

Solar

Stations would be in place for 3 to 5 years

Bectronics and Power

Footprint ~10 feet X 20 feet

Alternative Enclosure

Contents: (4) 100AH AGM Lead-Acid (3) 360AH LiFePO4 Datalogger Charge controller local data storage Comms terminal

> 410kg 30 x 44 x 28 inches

> > 38"

7.5"

4

Comparing Enclosures

Comparing how many Lead Acid vs. LiFePO4 batteries you can wedge into two different types of enclosures, factor in the weight of the overall package and a transit cost of \$25/kg round trip.

	#Pb batts	#LiFePO4	Cap cost	Weight	Tra	nsit Cost	Total Cost	КШН	cos	t/KWH
BOX1	3	2	\$ 10,650	328	\$	8,200	\$ 18,850	12.2	\$	1,545
BOX2	4	3	\$ 15,100	411	\$	10,275	\$ 25,375	17.8	\$	1,426
BOX2	16	0	\$ 5,500	642	\$	16,050	\$ 21,550	19.2	\$	1,122
HUT	24	0	\$ 9,500	1025	\$	25,625	\$ 35,125	28.8	\$	1,220
HUT	16	0	\$ 7,500	769	\$	19,225	\$ 26,725	19.2	\$	1,392

Power Details

Normal Operating mode 7.5 Watts Low power mode (duty cycle storage, comms) 3.5 Watts

(3) 90 Watt PV panels, south facing17-19 KWH batteries, two types of chemistry due to temperature

Nov 30-Jan 15 (1100 hours) @3.5W = 3.9 KWH, @7.5W = 8.3 KWH Nov 7-30, Jan 15-Feb 7 (1100 hours) run in low power mode = 3.9 KWH run in high power, with half PV gen = 4.2 KWH

Need a minimum of 8.3 KWH to coast through winter.

If solar power is not viable (Juneau, Aleutians), consider generators

Objective:

Run continuously through the winter, in low power mode as necessary. But in high power when state of charge allows.

Complexities:

Charging LiFePO4 at < -10C is not advised At cold temps charge Lead-Acid first, run system-wait to charge large battery banks until later in spring/summer when you have plenty of power. Use available power to heat enclosure before charging Lithiums??

Strategy:

Charge controller can charge either battery, switch either battery onto load and switch power mode of system based on state of charge.

Communications

Objective:

Deliver 40 Mbytes/day, with latencies under 4-6 hours. Need not be a continuous connection, but that is preferred when power and cost allow it. Must be under 2 Watts average daily power.

12 Gb/day compared with about 23 Gb/day today.

Complexities:

Can send data as file transfers or streaming packets or a combination to obtain highest compression.

Options:

Freewave and Cell where available

InMarSat M2M BGAN Hughes 9502 terminal

GlobalStar data network

Iridium Open Port

~ \$850k annually

11-15W full transmit at 400kbps 1W standby, SMS wakeup 0.1W sleep \$1000

BGAN I4 EIRP Elevation

12 x 12 x 2 inch flat plate 20 degree requirement

Reported to work in Barrow.

RED Lines = 10 Degree elevation = minimum recommended for BGAN PINK Lines = Regional Beams of APAC and AMER satellites = Should Work BLUE Lines = Narrow Beams = Hard to reach This map depicts Inmarsat's expectations of coverage, but does not represent a guarantee of service. The availability of service at the edge of coverage areas fluctuates depending on various conditions.

Potential Collaborations

Seismology Groups:

NRCan, Yukon Geological Survey NOAA / Alaska Tsunami Warning Center, UAF Alaska Earthquake Information Center and GPS, USGS Alaska Volcano Observatory

PI led;

Audet – Yukon and NWT Dallimore – Beaufort Sea

Other Disciplines:

Soil Temperature Romanovsky UAF Dallimore PGC

. . .

Meteorlogical NOAA Weather Service BLM – Fairbanks, National Petroleum Reserve

Paleoclimate, organic core samples LDEO - Pateet

For More Information

On the Web

- EarthScope
 - www.earthscope.org
- USArray
 www.usarray.org
- PBO
 - pboweb.unavco.org
- National Science Foundation
 www.nsf.gov

EarthScope is funded by the National Science Foundation.

EarthScope is being constructed, operated, and maintained as a collaborative effort with UNAVCO, IRIS, and Stanford University, with contributions from the US Geological Survey, NASA and several other national and international organizations.

Summary

- Current TA operation is fully staffed and operating at high levels of proficiency
 - Some staffing changes are required but the overall subaward structure is well suited to new tasks.
 - An experienced team is in place.
- Proposed schedule balances a rollout in Lower48 and ramp-up in AK, giving some time for techniques and equipment to be adapted to experience
- Development of reliable station deployment in harsh conditions is underway. Logistics planning and permitting are immense challenges.
- The TA in Alaska is poised for success
 - We are working on the ground in Alaska
 - Actively communicating with stakeholder communities
- IRIS Governance has proven to be an excellent model to shepherd community interests and to manage a \$50M field effort to collect relevant data, openly available to all.

Alaska Test Stations

Station	Location	Hole Type	Sensor	Depth (m)	Started
TCOL ()	CIGO, Fairbanks, AK (adjacent to COLA)	Augered 8" PVC casing	STS-4B	10	10/9/2012
TCOL (01)	CIGO, Fairbanks, AK (adjacent to COLA)	Augered 8" PVC casing	STS-4B	5	10/9/2012
HDA	Harding Lake AK (replaced AK.HDA)	Augered 8" PVC Casing	T120PH	5	10/4/2012
POKR ()	Poker Flat Research Range, AK	TA Tank into rock	T240	2	10/12/2012
POKR (01)	Poker Flat Research Range, AK	Augered 8" PVC casing	T120PH	5	10/12/2012
EPYK	Eagle Plains YT	Cored in rock	T120PH	1.4	10/15/2012

TA.HDA Harding Lake

Staffing Concept

USArray Transportable Array

Small blocks represent FTEs listed in WBS elements and grouped by (colored) functional task blocks. Affiliation of FTE with contract shown at bottom.

TA 5-Year Budget Totals

Changes in staffing are: Honeywell Services New Array Operations in Alaska Consolidation of construction and Installation teams

Reductions in AOF New Mexico as Alaska ramps up.

Increased Permitting, then transition to install

Add a subaward to UAF to facilitate integration with regional network.