SRI International

Development of Technology and Associated Platforms for In-situ Sensing of Physicochemical and Biological Parameters in Extreme Environments

Prepared for: 9th Annual Polar Technology Conference (PCT 2013) April 2, 2013

Prepared by: Andres M Cardenas-Valencia, PhD

With Contributions from: Michelle Cardenas, Eric Kaltenbacher, John Kloske, Timothy Short, Libby Tyner, Scott Williams

Outline

- SRI International
	- Space and Marine Technology Program
- Space and Marine Sensing (FL Office)
	- Portable Mass Spectrometry
		- ‒ Principle
		- ‒ Applications, including Polar-like Regions
	- ‒ Optical Sensors
		- ‒ Microorganism Properties Characterization: Algae Enumeration
		- ‒ Optical-based Chemical Mapping
		- ‒ Refractive Index Sensor: Salinity, Density, and Reagentless **Transducers**
- Other SRI St Petersburg Capabilities: Marine Operations Group

Introduction to SRI International

SRI is a world-leading R&D organization

- An independent, nonprofit corporation
	- Founded by Stanford University in 1946
	- Independent in 1970; changed name from Stanford Research Institute to SRI International in 1977
	- Sarnoff (RCA Labs) acquired as a subsidiary in 1987; integrated into SRI in 2011
- 2011 revenues: approximately \$585 million
- More than 2,500 employees
- More than 20 locations worldwide

Silicon Valley - Headquarters **Accord Multimeters** Washington, D.C. The Princeton, New Jersey Harrisonburg, Virginia

Washington, D.C.

St. Petersburg, Florida **State College, Pennsylvania** Arecibo, Puerto Rico

Tokyo, Japan

SRI's Impact on Society *More than 60 years of technology breakthroughs*

Banking Walter adam NEGAL-ALDED SASS-ALOGA 9/0000001000 ASA MARIN MARCHINER WAS IRRAINED ASSAULTED CHROCAMOUN **DEDORAT**

character recognition enabled automatic check processing (1950s)

Magnetic ink Computer Mouse

SRI invented Internet this and other foundations of personal computing (1968)

SRI received the first logon to the ARPANET (1969); made the first TCP-based Internet transmission over three dissimilar networks (1977)

SRI made ultrasound practical for medical diagnostics (1980s).

SRI technology allows surgeons to remotely perform minimally invasive surgical procedures. (1990s)

polymers for sensing, actuation, and energy harvesting (1990's)

SRI's natural language platform automates delivery of customer support (1996)

databases combined with artificial intelligence and symbolic computing techniques accelerate research (2000s)

support software helps the Internet be your personal assistant (2000s)

SRI Focus Areas

Combining discovery, engineering with disciplined innovation processes

"To promote and foster the application of science in the development of commerce, trade, and industry … the improvement of the general standard of living… and the peace and prosperity of mankind" 1946 Charter

Advanced Materials, Microsystems, and Nanotechnology

Marine and Space
Sensing (MSS)

Office located in St. Petersburg, FL, *part of SRI's ER&D*

Part of the Space and Marine Technology Program:

- Space Technology Integration Menlo Park, CA
- Marine and Space Sensing St. Petersburg, FL

Goals

- Create **new paradigms for technology innovation** in marine environments
- Enable rapid and low-cost technology driven demonstrations and missions
- Generate new opportunities for SRI technologies and innovations

Focus Areas

- Sensing for Extreme Environments
- Communications & Operations
- Missions & Demonstrations

Multidisciplinary group at the MSS

St. Petersburg, Florida

Need for In-water Chemical Monitoring and Profiling

- Oceans and coastal regions
	- Biogeochemical studies
	- Hydrothermal vent analysis
	- Pollution monitoring and tracking
	- Bloom and plume diagnostics
	- Ecosystem health (global climate change)
	- Energy source discovery
		- Methane and natural gas
		- Oil reservoirs
- Harbors and internal waterways
	- Port safety and security
		- Inadvertent chemical release
		- Deliberate chemical release
	- Water supply monitoring

ional Aeronautics and Space Administration Lewis Research Conter

Autonomous Ocean Sampling Network Concept

- Distributed network cells
	- Sensors, power, communication, intelligence and mobility
	- Data management, near-real time actionable data, integrated information sharing
- Benefits of *in situ* analysis
	- Reduced sample contamination
	- Increased sampling speed/density
	- Measurements in harsh environments
	- Real-time feedback
		- Rapid response
		- Adaptive sampling
		- Gradient mapping
	- Self-directed sensors

Parallel Development Projects at MSS

- Portable underwater mass spectrometry
- Miniaturization and microfabrication of charged particle traps for mass spectrometry and other applications
- Optical sensors, reagentless transducers
- Advanced projects
- Power and fuel sources
- Antifouling and Biomarkers
- Data management and visualization software

Networks of unattended high-performance marine chemical analyzers. Use of these analyzers in marine vehicles

Portable Mass Spectrometry

- Membrane Introduction Mass Spectrometry is ideal
	- Passive (except for sample pumping and heating, if desired)
	- Polydimethylsiloxane (PDMS) or Teflon are most common choices (hydrophobic)
	- Provides sensitive detection of dissolved gases and volatile organic compounds
- Need to mechanically support membrane (hydrostatic pressure)
	- Porous metal or ceramic frit

New, Smaller SRI MIMS Instrument

High pressure membrane interface

- Flow-over membrane interface design
- Temperature regulated
- Pressure tested to 200 bar (2000 m depth)
- Power: 50-70 Watts
- Voltage: 24 VDC
- Dimensions:
	- Length: 64 cm
	- Diameter: 24 cm
- Weight:
	- In air: 25 kg
	- In water: 5 kg neg.
- Depth rating: 2000 m

Simultaneous Detection of Multiple Analytes

- Dissolved gases
	- e.g. nitrogen, oxygen, argon, carbon dioxide, methane, hydrogen sulfide
	- In the water column or in porewaters (sediment)
- Volatile organic compounds
	- e.g. toluene, benzene, dimethyl sulfide, chloroform
- Larger MW compounds with modification
	- e.g. PCBs, pesticides, drugs, toxins
	- Sediment-sampling probe

USV

Oceanic Carbon System Measurements via UMS

- Method for measuring gaseous dissolved carbon dioxide (pCO₂) and total dissolved inorganic carbon (DIC) with UMS
	- Calculate total alkalinity and pH
- Dual membrane probe system
- Switching valve for rapid changing between acidified and non-acidified samples (DIC/ pCO₂)

Cardenas-Valencia, A.M., L. Adornato, R. Bell, R.H. Byrne, and R.T. Short*.* Rapid Comms. In Mass Spec., In press, 2013

Time-dependent Vertical Dissolved Gas Profiles in Sediment Pore Water

- Programmable sediment probe
- Water column/sediment profiles

- **Coarse** sediments
- **Steep** gradients

MIMS deployment in Polar-Like Region *Simulated Sea Ice Conditions*

- Brice Loose's (URI) NSF Project "Gas transfer through polar sea ice (GAPS)"
- Performed at the Cold Regions Research and Engineering Laboratory (CRREL) in Hanover, NH
- MIMS in Ice Engineering Test Basin for 1 week (-1.4 deg C)
- Monitored dissolved gas concentrations (basin water spiked with CO₂)

>3 days of MIMS data

m/z $18 -$ green m/z 28 – orange m/z 32 – blue m/z 40 – white m/z 44 – green (strong variation)

Next Steps- Lower Cost, Smaller MSs *Miniaturization and Microfabrication of Mass Spectrometers*

RF voltage is applied to the ring electrode (cylindrical in this case) to generate an oscillating electric field to trap ions. RF voltage is ramped up to eject ions

$$
V_{rf} = (q_z r_0^2 \Omega^2 m) / (4A_2 e)
$$

Quadrupole Ion Trap Geometry

Potential: Unit Mass Resolution and Looking Ahead

- Requires microfabrication and integration of all components
- High-density CIT arrays for increased sensitivity
- Matched ionization sources
- Fast high-gain detector for poor vacuum
- Micro vacuum pumps
- Integration into small package

Optical Sensors

Studying Ocean Acidification

Innovative instrument development provides researchers with the tools needed to make accurate and repeatable measurements

Current or Recent Projects

- **Sensor development**
- **Thermodynamic parameter determination in a high CO² world**
- **Direct measurement methods**

The multi-parameter inorganic carbon analyzer (MICA)

- •Enable global observations
- •Improve understanding and awareness by general public and policy makers
- •Provide standardized approach for uniformity and data consistency

Determining Intrinsic Properties of Microorganisms

Develop methods to determine intrinsic properties (dielectric and optical) of algae and bacteria to permit enhanced cytometric and characterization of such microorganisms

Current or Recent Projects

- **Lab bench proof-of-concept demonstration**
- **Modeling and inversion of optical properties of colloidal dispersions: i.e. standards, bacteria, and algae (Gymnodinium Breve, Karlodnium micrum, Heterosigma akashiwo)**

Optical signatures of a standard and of bacteria properties

- •Increase database of available properties for analysis of suspended particle populations
- •Identification and quantification of organisms in mixed populations
- •Can be used to determine properties of colloidal systems with traditional optical techniques

Enumerating Harmful Algae

SRI is working to create new technology that will enable the identification and enumeration of harmful algae before bloom conditions

Current or Recent Projects

- **Proof-of-concept demonstration**
- **Mapping optical properties**
	- **Pigments**
	- **Scattering functions**

Laboratory investigation of algae optical properties

- •Protecting populations through prediction of harmful algae blooms
- •Identifying organisms in ballast water
- •Increasing the sampled volume over that in traditional techniques

Optical Sensors and Reagentless Transducers

Develop novel optical interrogation platforms and demonstrate advantages of optical vs. conductivity for salinity determination

- Conductivity: Highly dependent on temperature
	- Non-electrolytes not (i.e. NO₂ and $CO₂)¹$
- Refractive index: $n(T)$ is 10 times smaller than conductivity¹ - Direct measure of the density of the solution

Current or Recent Project

- Lab bench proof-of-concept demonstration of waveguide approach enabling high sensitive optical property determination
	- 1x10⁻⁶ RI is desired (0.005 salinity)
- Current working on a deployable improved prototype (T)
- Develop algorithms to deconvolve salinity, density^{2,3} and other chemical targets (attachment of transduction molecules)

- Increase temporal/spatial resolution of physicochemical parameters ivia the distribution of more sensing nodes
- ¹Grosso, P., M. L. Menn, et al. (2010). Deep Sea Research Part I: Oceanographic Research Papers 57(1): 151-156.
- ² Cardenas-Valencia, A.M., R.H. Byrne, and E.T. Steimle*.* Sensors and Actuators B-Chemical, 2006. **115**(1): p. 178-188.
- ³ Cardenas-Valencia, A.M., et al*.* Sensors and Actuators B: Chemical, 2007. **122**(2): p. 410-418.

[•] Miniature (2X OoM), low-power (1x OoM), low-cost sensors (1xOM) can be configured in several form factors

High-Sensitivity Optical-based Chemical Mapping

SRI develops and deploys instrumentation for in situ chemical analysis in both freshwater and marine environments

Nitrite concentration in the North Pacific

Current or Recent Projects

- **Reef studies**
- **Agricultural run-off**
- **Deep water studies**

- •Novel technology provides part-per-trillion sensitivity
- •Analysis of drinking water for contaminants
- •Highly flexible and adaptable for a wide variety of analytes

SRI's instruments deployed to monitor a barrel sponge

Marine Operations Group

Space and Marine Technology Program SRI International

Bluefin 12-inch AUV Deep Sea Systems Sea Max ROV

- **Depth Rating:** 600m w/1000m option
- **Payload:** Up to 36" long, free flooding
- **Power:** Up to 8 hrs runtime; 100W of power for sensors
- **Speed:** 3 kts cruise (1.5 m/s); 5kts max (2.5 m/s)

Weight:

- **Air**: Up to 550lb with payload
- **Salt water:** Neutral

Dimensions: 12-¾"D x 132" L

- **Depth Rating:**300 meters with 1000-meter option
- **Payload:** up to 150 lbs
- **Sub Sea Power:** 800W of 12 or 24 VDC with 120AC available
- **Comms:** Fiber to surface; Ethernet and RS232/485 subsea
- **Navigation:** INS-Kearfott T16; USBL- and DVL-aided
- **Weight:** 1100 lbs in air
- **Dimensions:** 66" L x 35" W x 45" H
- **Launch and Recovery System:** Crane or A-frame

Control Van

- Designed as a vehicle shipping container and operations support center
- Separate operations section and work space
- Theater-style seating
- Dimensions: 8'W x 20'L x 9.5'H
- Climate controlled
- Built-in automated, plumbed coffeemaker

Facilities

SRI's Tampa Bay harbor-side facility accommodates a variety of operations and testing requirements

450-ft. Wharf

- 20' alongside depth
- 2-ton capacity crane
- 3-phase 220/480 vac power
- Dockside Ethernet and water
- Dock is accessible for large truck deliveries
- Compressed air

Marine Operations Building

- 34' x 54' air conditioned operations support shop w/direct wharf access
- 5-ton hoist
- Internet access
- Compressed air
- 3-phase 220/480 power
- Generator backed-up single phase 110 VAC
- Conference/training room 1000 ft² (36+ person capacity)
- Additional office space, conference, and training rooms

Contact of SRI Marine Operations

SRI Marine Operations:

John Kloske SRI International 450 8th Avenue SE St Petersburg, FL 33701 john.kloske@sri.com Shop: 727.498-6765 Cell: 727.252-6477

Contact Space and Marine Sensing

SRI International

Andres M. Cardenas-Valencia, PhD SRI International 450 8th Avenue SE St Petersburg, FL 33701 [andres.cardenas@sri.com](mailto:john.kloske@sri.com) Office: 727.498-6721

Questions?

Power and Fuel Sources

- Reserve-type micro-batteries
	- Microfluidic-actuated electrochemical sources
- Water-activated batteries
	- ‒ Application: High-power design
	- ‒ Valving manufacture
	- ‒ Novel developments (enabling technology)
- Semi-fuel cells
- Microbial fuel cells
- Other energy related projects:
	- Hydrogen production and storage
	- Water-energy link
	- Super capacitors
	- Fuel and energy production via sulfur wastes
	- Silane production

MEMS battery designs fabricated to verify the effects of cell configuration on the reagent utilization efficiency

J. Micromech. Microeng. 16 (2006) 1511-1518 Sensors and Actuators: Chem. B. 122(1) (2007), 328-336 J. Appl. Energy, Submitted (2012)

Seawater-activated Batteries

- Aluminum-anode, seawater-activated cells
	- No pressure vessel required
	- Immersion-activated designs
	- Organic halamin**e**s

$$
V_{load} = \left[V_{oc} + \left(\frac{D}{\mu} \right) \ln \left(\frac{d}{\zeta \epsilon \mu A} \right) \right] - \left(\frac{D}{\mu} \right) \ln (R_{load})
$$

Where D represents the ion diffusivity,

- ξ the ionic valence,
- the electron charge and
- μ the ion mobility and

J_{load} = $\left[V_{oc} + \left(\frac{D}{\mu} \right) \ln \left(\frac{d}{\zeta \epsilon \mu A} \right) \right] - \left(\frac{D}{\mu} \right) \ln(R_{load})$

Where D represents the ion diffusivity,
 ξ the ionic valence,

e the electron charge and
 μ the ion mobility and
 R_{load} is the res R_{load} is the resistor representing the impedance to which the cells will be subjected.

- Commercially available baselines (2008)
	- Mg-Seawater: \$1.5 to 10 / Wh (45 to 150 Wh/kg)
	- Alkaline–D type: $\frac{1}{2}$ 0.12 / Wh (160 Wh/kg)
- Low-cost and high-endurance cells
	- $-$ \$ 0.16 / Wh (80 to 120 Wh/kg)
	- $$2.5$ to $$5$ / Wh (up to 200 Wh/kg)

J. Power Sources 166(1) (2007) 273-283.

Potted terminals, low-cost design

Antifouling and **Biomarkers**

International

Lawn of Escherichia coli

Lawn of Staphylococcus aureus

- Develop new natural and bioinspired antimicrobials from marine sources.
- Certain marine protists become susceptible to biofouling and predation at the onset of bleaching – a response to photo-oxidative stress
- SRI is investigating the chemicals associated with healthy an stressed organisms for:
	- ‒ Biofouling inhibition
	- ‒ Biomarker potential
- ‒ Cell signaling and communication *Photos courtesy Mickey Cook, SRI*
	- Taking advantage of current technologies available for antimicrobial drug discovery
	- Initial results prove promising for inhibition of both a grampositive and a gram-negative bacteria
	- Potential for an environmentally-safe antifouling and antimicrobial coating developed for marine and medical use in the defense and commercial markets

Additional Slides