
A Robust Command,
Communications and
Data Acquisition System
For Autonomous Sensor
Platforms Using The
Data Transport Network

We use the TS‐7260 single board computer (SBC) from Technologic
Systems. It is temperature rated to ‐40C and is capable of running a
standard Linux kernel.

Hardware Stack1

‐ 30 DIO lines
‐ 2 12‐bit ADC
‐ Watchdog �mer
‐ Ethernet
‐ 3 serial ports

‐ 200MHz ARM9 CPU
‐ PC104 expansion bus
‐ 128MB SDRAM
‐ 128MB NAND Flash
‐ 2 USB ports

The total power consump�on is 1W, which can be reduced to
0.25W when idle. A custom power control board is used to turn
instruments off to conserve power and includes signal condi�oning
to monitor power usage.

Tincan Linux2

We roll our own embedded Linux distribu�on. At the core is
the 2.6.34 kernel, patched to support the TS‐7260 SBC. Most
of the common Unix commands are provided by Busybox and
the lightweight uClibc C library. A typical system, including the
Python programming language, has a footprint of 40MB.

The en�re build process is controlled by Buildroot:

 ‐ Makefile based
 ‐ Builds the cross‐compiler tool chain
 ‐ Package selec�on
 ‐ Custom local packages
 ‐ Creates root file system

The en�re system runs out of the on board flash memory,
which uses YAFFS2 to prevent data loss during power outages
and provides wear‐leveling.

GPS Data Monitor

GPS
Receiver

Outbound
Spool

gps-20100317-220000.dat

00

15

30

45

gps-20100317-210000.dat

gps-20100317-230000.dat....

Schedules

CacheHardware
Control

Data

Power

Resource
Manager

Sample
every
hour

Applica�on Structure3

The Data Transport framework is used to organize a

large collec�on of programs that make up the

applica�on layer. In the Unix tradi�on, there is one

program for each task. The programs fall into two major

categories: data monitors and network services.

The data monitors are programs that interface to the sensors and

collect data. Adding a new sensor into the system only requires wri�ng a

small data collec�on program that slots into the framework. The scheduling

of when the instrument turns on, how o�en the data are sampled and control

of the hardware resources it needs are all handled automa�cally. This approach

provides a means of spli�ng up a problem into small, easily implemented pieces

that s�ll func�on together in a consistent and integrated manner. More over, if one of

the programs crashes, the rest of the system s�ll func�ons.

Failsafes7

Iridium RUDICS File Transfers5

Deployments8

Resource Management6

Scheduling4

Window Rate

Window SpanWindow SpanOffset

Sample Rate

startup()

goingOffToOn()

sample()
goingOnToOff()

shutdown()

sample.rate: 1:00:00
window.rate: 1 day
window.offset: 6:00:00
window.span: 8:00:00 0 6 14

Window Max

solar local noon

Rudics

Linux Server
Packetize

Modem
Control

RDTP
Server

RDTP
Server

Port 119Spool

Grouping
Data Files

Web displays Archives

Alerts

News
Server

Exchange
Client

Bytes on
the wire

Using a store‐and‐forward approach, the data files from the instruments are
queued in the SBC's internal flash memory and offloaded over an Iridium
satellite link using the RUDICS data service. The data transfer is managed by a
set of programs in the framework, packe�zing the data files and pos�ng them
into the Data Transport Network for delivery to the server. The communica�ons
programs handle the idiosyncrasies of the Iridium link, resuming the data
transmissions when the link drops and priori�zing traffic. Messages can also be
sent to the site from the server, allowing for code and schedule changes.

The data files are posted into a central server at the other end of the Iridium
RUDICS link. Incoming data files are posted into message queues, to which
programs can subscribe. These programs handle the data processing, web
displays and file archiving on server. In a manner similar to the on‐board
so�ware, the Data Transport Network provides the framework for organizing
these various programs and message queues.

Each monitor has a set of schedules
that determine when it runs. A simple
schedule has a sample window within
which data are periodically collected.
Mul�ple schedules are supported,
ordered by a priority value, allowing for
seasonal or campaign overrides.

More sophis�cated schedules are
supported, such as sampling around
solar local noon. Instruments, such as
cameras, only collect data during the
day. The solar angle is computed from
the GPS posi�on and dynamically fed
into the schedules.

Recovering from unexpected problems is necessary for long‐
term una�ended opera�ons. We use a layered approach:

 ‐ Kernel parameters set to reboot on panics and oopses
 ‐ Hardware watchdog reboots if not reset in 8 seconds
 ‐ So�ware watchdog (via cron) reboots if data transfers stop
 ‐ Periodically power on modem for listen only
 ‐ PPP dial in server

A flag can be sent to the system instruc�ng it to keep the
Iridium modem powered on, at which point you can manually
log in to the system.IceLander

IceGoat

OBuoy 1‐8

Hudson Bay

Thule
(GRiT)

ResoluteImnavait
Creek

Ivotuk

‐ OBuoy
‐ IceLander
‐ IceGoat
‐ IceKid
‐ Weather sta�ons
‐ Remote cameras
‐ Radar controllers
‐ Power monitoring
‐ Flux towers

Todd Valen�c
Center for GeoSpace Studies
SRI Interna�onal
Menlo Park CA 94025

Need
A reliable, low‐power, computer system for collec�ng and transmi�ng
data from mul�ple sensors at remote sites that are operated
autonomously for long periods of �me, suppor�ng the Na�onal Science
Founda�on's Arc�c Research Support and Logis�cs Services program.

Data Transport Network

A low‐power, temperature rated single board computer (SBC) is selected,
upon which we run a version of the Linux opera�ng system tuned for
embedded systems. The applica�on layer uses the Data Transport Network
as a framework to organize the collec�on of programs used to collect data
from the instruments. A set of so�ware services provide for resource
management and data transmission over the Iridium satellite
constella�on. A number of fail safes are implemented to allow the system
to recover from unexpected situa�ons.

Approach

More Informa�on

todd.valentic@sri.com

datatransport.org
transport.sri.com/projects/�ncan
transport.sri.com/rudics
busybox.net
buildroot.org

The Data Transport Network is a system for designing robust field
instrumenta�on that integrates the collec�on of scien�fic data, system
health monitoring, data processing and distribu�on of real‐�me results
over unstable and bandwidth limited networks. The system
is built around a set of message servers that provide a store and forward
mechanism for buffering data, a publish and subscribe interface for
accessing the data feeds and a so�ware framework for coordina�ng the
programs in the system. It has been in opera�on at field sites throughout
the Arc�c since 1999.

USB PC104 ETH DIO1 DIO2 CPU Battery
Resources

Weather
System
DOAS

GPS
Iridium

Campbell
Camera

Background
Manual

Current State

6

5
7
3
2

2,3,5,6,7

42

42

200

200

M
on

it
or

The resource manager service is the key to op�mizing the low power performance
of the system. It maintains a scoreboard of the global system state, tracking which
devices are powered on. When ever a program needs a resource, a request is
placed to the resource manager. The resource (an IO pin, the Ethernet port, etc.)
will be enabled. When the program is finished, it releases the resource. If another
program is s�ll using the resource, it will remain allocated un�l no other programs
are using it. The benefit of this approach is that each client program remains
independent of each other, yet the resource usage is fully integrated.

Acknowledgments
Na�onal Science Founda�on's Arc�c Research Support and Logis�cs
Services program.

Acknowledgments

Fall AGU 2012 ‐ C13E‐0669

Linux Kernel

Busybox / uClibc

cron
xinetd watchdog mge�y

Data Transport server

GPS

System

Camera

Iridium

Weather

Monitors

X
M

L‐
R

P
C

Resources

Cache

Modem

RUDICS

Exchange

Services

USB

Ethernet

Serial

ARM9

Flash

128MB

RAM

128MB

