Subglacial Lake Ellsworth

A review of the Programme

Subglacial lakes in Antarctica

Wright and Siegert, 2011

HOT WATER DRILL

Equipment specifications

- ~90 m³ water storage
- Absolute filtration to 0.1 micron + UV
- Heating capacity ~1.5 MW
- Pumping capacity ~240 litres/min@ 2000 psi
- Electrical capacity 300 kW
- Water recovery ~260 litres/min from 300 m
- Bespoke single piece hose 3.4 km long, 1.25"
 bore and self supporting in air filled hole
- Hose transports between 180-226 litres/minutes @2000 psi and 90-100°C
- 30-100 % spare capacity (filtering, pumping, heating and electrical) to provide flexibility
- All standard commercial equipment with minor modifications to meet environmental conditions

BOILER SYSTEM

- Bespoke containerised boiler system with isolated stainless steel heat exchanger
- Gross weight 8.5 tonnes
- 1.5 MW oil fired boiler
- Burns 250 litres/hr of Jet A1 fuel
- Auxiliary 108 kW electric heater

- Air / fuel mix difficult to balance resulting in smoke and reduced heat output
- Two controller boards failed – third flown in and programmed via satellite
- A number of fittings failed due to cold and needed to be replaced
- Boiler working (sort of). In contact with the suppier
- Ready to melt snow

WATER STORAGE TANKS

- 3 interconnected flexible storage tanks
- Each capable of holding 30,000 litres of water
- Size 5.5 m x 1.5 m
- •The central tank contained a heating coil fed from the primary circuit of the boiler

WATER UV & FILTRATION SYSTEM

- Four stage filtration system 20 μm, 5 μm, 1 μm, 0.1 μm
- Each stage houses 7 polypropylene filters
- Two UV units connected in parallel
- Dual redundancy of filters and UV units

HIGH PRESSURE PUMPS

- Cat Pumps field proven
- Bank of 4 pumps in parallel, any 3 could be used to reach the required pressure
- A flush pump was used to cool the pumps using an ethanol based coolant to keep the drill water sterile

- Water tanks were satisfactory but filling them manually was hard work and the uneven surface meant they lilted to one side obstructing some of the valves
- Filter system worked very well and removed all the soot emissions from the boiler
- Cat pumps worked very well
- Ready to start drilling the borehole

Water Р Circulation Ρ storage pumps tank Startup Water UV+ circulatory filtration system system Heat Boiler Exchanger P High pressure water pumps Borehole umbilical Hot water reeler reeler 210 ltr/min 2000 psi 90°C Drill hose ~300m Hydrological water level (270m) Submersible borehole Cavity pump Lake access hole Drilling nozzle

BOREHOLE UMBILICAL REELER & SUBMERSIBLE PUMP

- Lack of good winch speed control at slower drilling speeds (hydraulic drive limitations)
- Severe electrical noise and damaged winch load cells made it difficult to "see" the drilling process
- The above resulted in the drill nozzle extension below the submersible pump being bent <u>twice</u>!
- Nozzle removed!

Water Circulation Р storage pumps tank Startup circulatory system Water UV+ filtration system Heat Boiler Exchanger P P High pressure water pumps Borehole umbilical Hot water reeler reeler 210 ltr/min 2000 psi 90°C Drill hose ~300m Hydrological water level (270m) Submersible borehole Cavity pump Lake access hole Drilling nozzle

DRILL HOSE REELER & NOZZLE

- Borehole cavity volume at 300 m depth estimated to be >100 m³ after ~ 40 hours in situ
- Main hole cavity volume at 300 m depth estimated to be >70 m³ after ~ 20 hours in situ
- Failure to link holes at 300 m
- 90,000 litres water used
- Finite supply of fuel
- Limited ability to generate water at surface at the rate required

GAME OVER!

So what happened?

Drill cavity at 300 m depth

0.52 MW over 20 hrs, melted 102 m³ of ice in pump hole cavity. (Sphere Ø 5.8 m, Ellipsoid 10x3.2x3.2 m)

Over 20 hours at >70°C melted 135 m³ of ice in main hole cavity. (Cylinder 20x2.9x2.9m or 10x4.1x4.1 or 5x5.8x5.8)

Vertical positioning accurate to 0.5 m.

Conclusion

One or both holes were not vertical as a result of the problems encountered with the winch controls and drill sensors

Lessons Learned

- Better understanding of the cavity creating process and the max distances between holes
- Instrumentation to determine hole verticality
- Better control of slower winch speeds (switch to electric?)
- Working load cells are essential to determine max drill speed
- Boiler system needs a rethink there were several minor and one major issue with it
- The data acquisition system needs to be screened from the noise
- The ability to make water quickly needs to be addressed
- The number and skill set of the field team should be reviewed

