

# Advances in Remote Seismic Station Technology

**Polar Technology Conference 2014** 







## Overview

- PASSCAL polar program overview
- Cold temperature performance of LiFePO<sub>4</sub> batteries
- Advances in real time data transmission using RUDICS
- Next generation multiyear seismic station design
- Alaska PV study optimal solar panel mounting for a wide range of latitudes





# hvaplumoviety histopy Mygamy britishes somewhite

## **PASSCAL**

## Program for Array Seismic Studies of the Continental Lithosphere

- Facility provides instrumentation to NSF, DOE or otherwise funded seismological experiments around the world
- Services include, but are not limited to:
  - Seismic instrumentation
  - Equipment maintenance
  - Software
  - Data archiving
  - Training
  - Logistics and shipping
  - Engineering support
  - Field Support







## **Facility**





Photo Courtesy of George Slad







## **Facility**

## ~35 Full Time Employees

Polar, Sensors, Hardware, Software, Data, Admin

Equipment stored onsite in a warehouse



Lab space for repairing, testing and developing seismic equipment and software





## **POLAR Group**

- Five full time employees support all PASSCAL polar experiments
  - Three mechanical engineer, one electrical engineer, one integration and testing seismologist
  - Rest of facility offers additional support and expertise including equipment testing and repair, shipping and logistics.
- Team spends ~14 months in the field each year, actual man hours spent is much higher
- Heavy focus on engineering and development due to harsh nature of polar environments











# POLAR Group















## LiFePO<sub>4</sub> Testing

LiFePO<sub>4</sub> Batteries vs Lead Acid Batteries

- Charging cycles
- Weight and Volume
- Charging efficiency
- Charging complexity
- Cost
- Cold temperature performance



The PASSCAL Engineering group and Genasun have characterized the cold temperature performance of the LiFePO<sub>4</sub> batteries sold by Genasun:

- In-house cold temperature discharge testing
- Third part cold charging investigation





## LiFePO<sub>4</sub> Testing


### **Cold Discharge Testing:**

- Test Phase 1 High current discharge tests to verify batteries' ability to operate at cold temperatures
- **Test Phase 2** Constant current to constant voltage (CC/CV) discharge tests to characterize low discharge rate performance
- Test Phase 3 Long term low current discharge test

### Third-party cell characterization:

Effect of cold charging on LiFePO<sub>4</sub> cells, charging efficiency at low temperatures



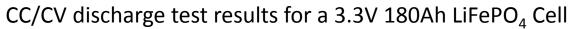


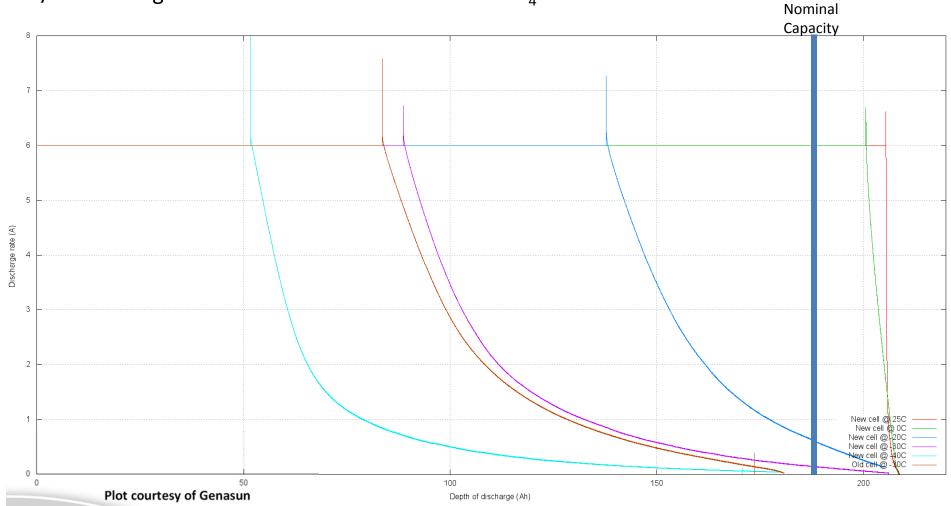

| Temp                 | 5A    | 2A    | 1A    |
|----------------------|-------|-------|-------|
| 25C                  | 103Ah | 103Ah | 104Ah |
| -20°C                | 57Ah  | 69Ah  | 85Ah  |
| Capacity at<br>-20°C | 55%   | 67%   | 82%   |

- Clear loss of capacity at lower temperature
- Capacity loss lessens as discharge rate decreases (beneficial for Polar use)





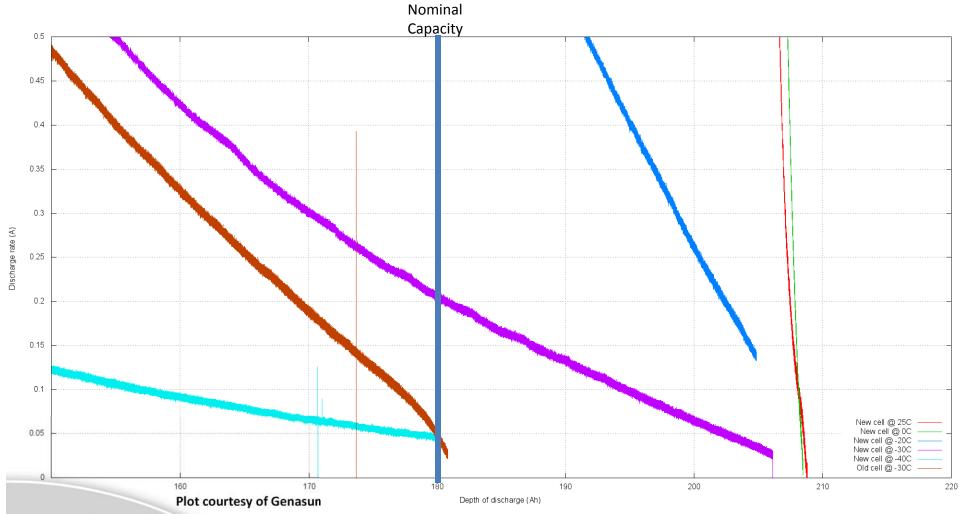

Genasun ran CC/CV discharge tests to rapidly characterize performance at low discharge rates




- Rapidly remove a significant portion of the battery's capacity
- Can obtain a complete capacity vs. discharge rate curve after running a single test
- Run this test at different temperatures to obtain capacity vs temperature relationship













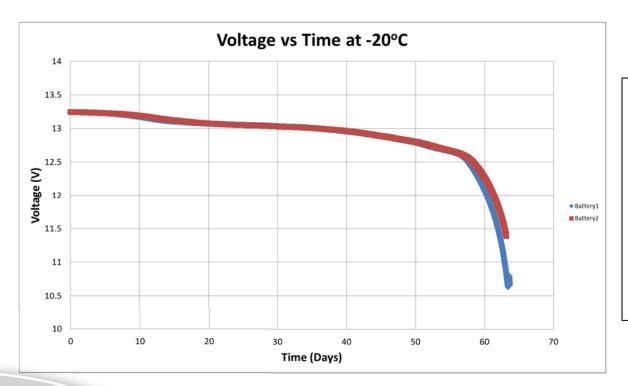







Comparison of constant discharge rate and temperature affects on the 180Ah LiFePO<sub>4</sub> Cell:

| Discharge Rate | -40°C | -30°C | -20°C | 0°C      |
|----------------|-------|-------|-------|----------|
| 1A             | 79Ah  | 132Ah | 177Ah | 206Ah    |
| 0.5A           | 100Ah | 155Ah | 192Ah | 207Ah    |
| 0.25A          | 125Ah | 175Ah | 200Ah | 207.75Ah |
| 0.1A           | 157Ah | 195Ah | 205Ah | 208.1Ah  |
| 0.05A          | 180Ah | 203Ah | ND    | 208.3Ah  |


Low discharge rate allows the battery to deliver nameplate capacity even at very cold temperatures





Two month discharge test to validate cold temperature performance

• Two identical 100Ah LiFePO<sub>4</sub> batteries were discharged at -20°C with a load sized to drain the batteries in two months ( $\approx$ 65mA current draw).



## **Capacity Delivered:**

Batt 1 = 97.7Ah

Batt 2 = 97.5Ah

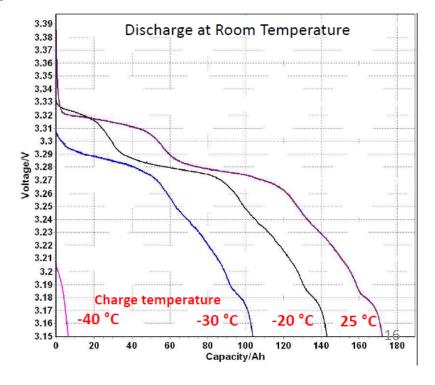
Essentially no de-rate from nameplate capacity!





## LiFePO<sub>4</sub> Testing – Third Party

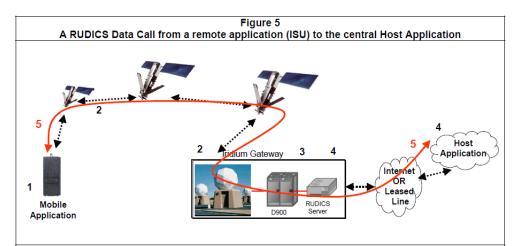
Third party – Exponent Engineering and Scientific Consulting contracted by Genasun


### **Key Points**

- At low temperatures, cell resistance increases significantly which limits charge/discharge capacity
- No evidence of lithium plating in the cells when charged at low temperatures
  - i.e. cells are NOT damaged by cold temperature charging (within bounds)
    - Exponent charged cells with 39.5A at -10°C, -20°C, -30°C and -40°C
- Electrolyte NOT frozen at -40°C, but it is partially frozen at -60°C.

| Temperature (°C) | Charge<br>Capacity (Ah) |
|------------------|-------------------------|
| 25               | 187.7                   |
| -20              | 159.8                   |
| -30              | 104.0                   |
| -40              | 19.0                    |

Plot, table courtesy of Genasun






# hvaplumvings/hepty

## **RUDICS**

## RUDICS - Router-Based Unrestricted Digital Internetworking Connectivity Solutions



#### Sequence of Events:

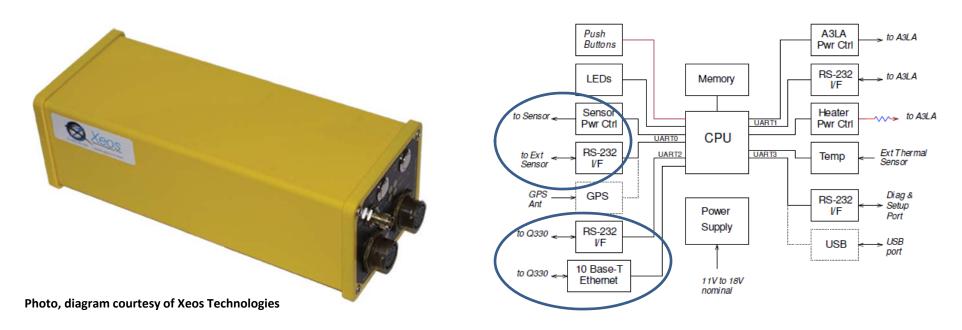
- 1. Mobile application places call to a custom RUDICS Server Number
- 2. Call request is routed over the constellation for user authentication and call set-up.
- 3. Switch connects to RUDICS Server, secondary authentication conducted
- 4. RUDICS Server terminates call to pre-configured IP Address
- End-to-End IP connection established, over the constellation, between the Host Application and Mobile Application

From Iridium Satellite Data Services White Paper

Single host application interfacing with many field devices

Data calls to and from a specific IP Address

Full two way communications (full duplex)


300 Bytes/s data rate allows for 1MB/hour of real time data





## **RUDICS - Hardware**

XI-100 Iridium terminal manufactured by Xeos Technologies Inc – IRIDIUM VAR

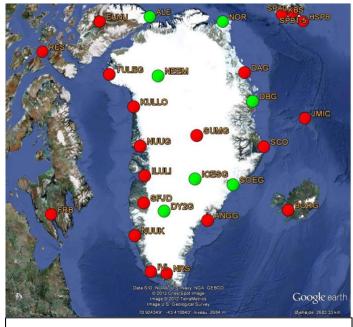


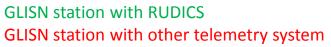
- Optimized for polar operation very low standby current (450uA), integrated heater allows for transmission of data down to -55°C.
- Can interface with datalogger via Ethernet or Serial RS-232
  - Can interface with an additional "External Sensor"
    - Provides power and transmission of data, currently supporting WX520 weather station



## **RUDICS - Hardware**

Xeos tunnel application – provides interface between host application and field devices. Turns a remote, complex network into a LAN. Tunnel can run user scripts allowing automated data acquisition.


| XOS<br>Technologies Inc.       |          |                                     |                        |                   |                     | ☆ ■                       |
|--------------------------------|----------|-------------------------------------|------------------------|-------------------|---------------------|---------------------------|
| Status View Logs Q330 Shutdown |          |                                     |                        |                   |                     | Wed 9 Apr 14 :: 8:36:03 p |
| id Name                        | Status   | Last Connected                      | Last Disconnected      | Rx/Tx             | V/T/RSSI            |                           |
| 8 UPPA.modem.150               | Active   | Disconnected 09-04-2014 07:14:27 PM | 09-04-2014 07:35:10 PM | 74 KB / 2431 KB   | 13.17 V / 32 C / 5  | Details Restart           |
| 9 SOEG.modem.151               | Active   | Connected 09-04-2014 08:32:31 PM    | 09-04-2014 08:31:30 PM | 190 KB / 6711 KB  | 13.84 V / 19 C / 4  | Details Restart           |
| 10 HEL1.modem.181              | Active   | Disconnected 09-04-2014 07:40:42 PM | 09-04-2014 07:42:46 PM | 7 KB / 1087 KB    | 10.71 V / 17 C / 5  | Details Restart           |
| 11 NE2.149                     | Active   | Disconnected n/a                    | n/a                    | 0 KB / 0 KB       | 13.52 V / -17 C / 5 | Details Restart           |
| 12 ICESG.modem.192             | Active   | Connected 09-04-2014 07:06:32 PM    | 09-04-2014 07:01:06 PM | 4 KB / 0 KB       | 14.4 V / -11 C / 5  | Details Restart           |
| 13 DY2G.modem.143              | Active   | Connected 09-04-2014 07:41:43 PM    | 09-04-2014 07:40:46 PM | 6 KB / 1346 KB    | 14.47 V / -3 C / 5  | Details Restart           |
| 14 NEEM.modem.144              | Active   | Disconnected 09-04-2014 07:40:59 PM | 09-04-2014 07:43:01 PM | 5 KB / 1179 KB    | 14.05 V / -18 C / 5 | Details Restart           |
| 15 JAK.modem.180               | Inactive | Disconnected n/a                    | n/a                    | 0 KB / 0 KB       | 0.0 V / 12 C / 0    | Details Restart           |
| 16 RIS3.modem.117              | Inactive | Disconnected n/a                    | n/a                    | 0 KB / 0 KB       | 0.0 V / -8 C / 0    | Details Restart           |
| 17 PIC1.modem.135.POKER.FLAT   | Active   | Connected 09-04-2014 08:05:18 PM    | 09-04-2014 08:03:39 PM | 164 KB / 5520 KB  | 13.84 V / 24 C / 5  | Details Restart           |
| 18 RUDI.modem.179              | Active   | Connected 09-04-2014 08:35:44 PM    | 09-04-2014 08:34:10 PM | 258 KB / 10414 KB | 13.2 V / 41 C / 5   | Details Restart           |
| 19 ICES2.modem.206             | Active   | Disconnected n/ā                    | n/a                    | 0 KB / 0 KB       | 12.83 V / -21 C / 5 | Details Restart           |
| 20 BRRP.modem.145              | Active   | Disconnected n/a                    | n/a                    | 0 KB / 0 KB       | 12.88 V / 25 C / 5  | Details Restart           |
| 21 NOR.modem.178               | Active   | Connected 09-04-2014 08:03:36 PM    | 09-04-2014 08:02:11 PM | 256 KB / 6755 KB  | 13.31 V / -5 C / 5  | Details Restart           |
| 22 ICES1.modem.205             | Active   | Disconnected n/a                    | n/a                    | 0 KB / 0 KB       | 12.78 V / -24 C / 5 | Details Restart           |
| 23 B44.access.new.rudics.cfg   | Inactive | Disconnected n/a                    | n/a                    | 0 KB / 0 KB       | 0.0 V / 28 C / 0    | Details Restart           |
| 24 DBG.modem.142               | Active   | Commetted 09-04-2014 08:13:15 PM    | 09-04-2014 08:11:37 PM | 164 KB / 6075 KB  | 13.44 V / 7 C / 5   | Details Restart           |
| 25 NE1.207                     | Active   | Disconnected n/a                    | n/a                    | 0 KB / 0 KB       | 13.39 V / -33 C / 5 | Details Restart           |
| 26 modem.208                   | Inactive | Disconnected n/a                    | n/a                    | 0 KB / 0 KB       | 0.0 V / 25 C / 0    | Details Restart           |
| 27 NE3.209                     | Active   | Disconnected n/a                    | n/a                    | 0 KB / 0 KB       | 13.6 V / -19 C / 5  | Details Restart           |
| 31 NE4.210                     | Active   | Disconnected n/a                    | n/a                    | 0 KB / 0 KB       | 13.65 V / -18 C / 5 | Details Restart           |
| 32 NE5.211                     | Active   | Disconnected n/a                    | n/a                    | 0 KB / 0 KB       | 13.68 V / -18 C / 5 | Details Restart           |
| 33 NE6.212                     | Active   | Disconnected n/a                    | n/a                    | 0 KB / 0 KB       | 12.88 V / -12 C / 5 | Details Restart           |
| 34 SE1.213                     | Active   | Disconnected n/a                    | n/a                    | 0 KB / 0 KB       | 13.55 V / -34 C / 5 | Details Restart           |


Modem on and transmitting data Modem standby





## **RUDICS – Current Use**











## RUDICS – Current use by PASSCAL



#### **Current Use**

- 1. Poker Flats, Alaska 9MB/day
- 2. Greenland 8 stations moving up to 20MB/day
- 3. Antarctica 2 stations moving **9MB/day**

#### **Future Deployments**

- 1. Phase into POLENET project 34 stations in Antarctica
- 2. Greenland 7 new stations to be deployed this summer with RUDICS capability

#### **Advantages**

- 1. In depth command and control
- 2. Real time data acquisition
- 3. SOH monitoring of devices
- 4. RUDICS can be turned on/off to conserve power

#### **Current Problems:**

- 1. Complex, inaccessible network makes troubleshooting and bug fixing difficult
  - 1. DOD black box networks can be brought down inexplicably.
- 2. Drop outs, slow link -> difficult to optimize host application

#### **Power Consumption:**

- 1. SOH and 1Hz data on three channels (in the field) 1.45W
- 2. SOH and 20Hz on three channels using latest FW (lab testing) 2W
- 3. SBD mode (in the field) 10mW



## RUDICS – You can use it!

- Iridium connectivity and real time data transmission need not be complex!
- XI-100 unit currently has great functionality, and much additional functionality that needs more development.
- Unit has been designed to interface with any networked remote device not specific to seismic or geophysical instrumentation.
  - It is an **Ethernet bridge** of the Iridium Network
  - UNAVCO uses it with GPS receivers



#### Goals

- Light, small stations
- Rapid installation and removal
- Plug and play design

#### Solution

- Customized enclosure that reduces footprint and weight
- Primary batteries used in the winter to reduce weight and size
- Solar panel mount that is stable in snow WITHOUT rigging or additional anchoring
- Direct bury sensor with increased tolerance for tilt



#### **Power**



### Lithium Thionyl Chloride

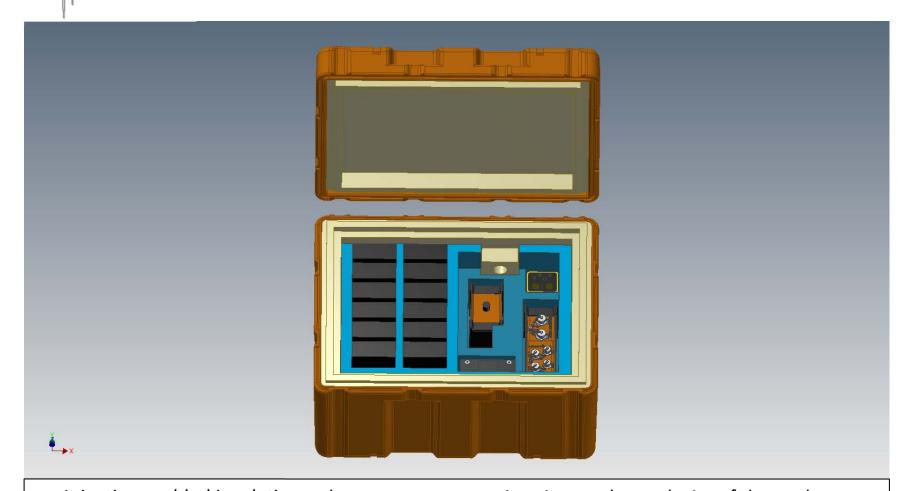
- 3040Wh in 11lbs
- 276Wh/lb
- Non-rechargeable
- Hazardous
- Low current source
- Two year station = 113lbs

#### Lead Acid AGM


- 1360Wh in 65lbs
- 21Wh/lb
- Rechargeable
- Non-hazardous
- High current source
- Winter station = 570lbs

LTC Batteries are ideal for limited length deployments – vastly reduce weight of power system and have excellent cold weather performance

Are combined with a small AGM and solar array for summer time operation




### **Enclosure and Solar**



Weight: 365lbs Volume: 35ft<sup>3</sup> Weight: 115lbs Volume: 19ft<sup>3</sup>





- Injection molded insulation reduces cost, construction time and complexity of the enclosure
- Custom foam liner stabilizes the components during travel





#### **Sensor**



Standard Sensor Installation

Weight: 73.5lbs

Volume: 16ft<sup>3</sup>

Post Hole Sensor Installation

Weight: 40lbs

Volume: 1ft<sup>3</sup>



#### **Year Round AGM Station**

Run time = indefinite

Total weight = 1070lbs

Total cube = 51ft<sup>3</sup>

#### **Installation:**

- Station must be completely built on the ground
- >3 hours with three person team

## **Rapid Deploy Station**

Run time = 2 years

Total weight = 350lbs

Total cube = 20ft<sup>3</sup>

#### **Installation:**

- Enclosure and solar panel mount preassembled
- <1 hours with three person team</li>

≈35 rapid deploy stations will be installed during 2014-2015 Antarctic season

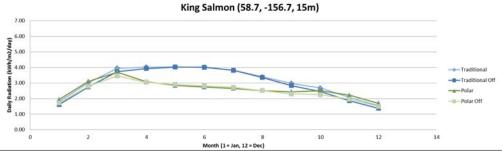


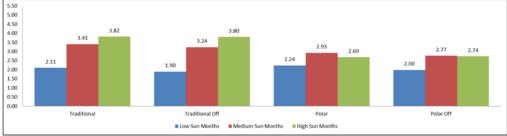
# In suplement out of the state o

## Alaska PV Study

#### Purpose of the study:

 Determine the optimal solar panel orientation for Alaska


#### **Procedure:**


- Use weather and solar radiation data to study available PV power at 5 different latitude bands
- Latitudes ranged from 58°N to 71°N
- Calculate the optimal solar panel orientation
  - Defined as the orientation that minimized the required battery capacity

#### **Results:**

- A polar style solar mount (panels mounted vertically and facing due South) is optimal for ALL of Alaska
- Maximizes energy harvesting during low light months [5.50]
  - Reduces number of batteries needed for the station to run through the winter











## **Future Developments**

**GEOICE MRI** – Partnership between Central Washington University and IRIS to develop new instrumentation specifically for polar regions. Will include a mixed phase array consisting of broadband and intermediate band seismometers complete with power systems and enclosures.

- Low power, both types integrate a digitizer and post hole seismometer for installation in snow/ice
- Environmentally sealed, built for limited and difficult logistics
- Improved tilt tolerance
- Target is 125 element array
- Initial field testing in 2014?

Air cell batteries – excellent Ah/lb ratio but difficult to work with

- Require oxygen source
- Cannot source large currents
  - Transient currents can cause large voltage drops
- Capacity drops of 0% near -20C
- Use air cells like a solar panel to charge a rechargeable battery?
  - Modify existing solar change controller GV-5C



