Development of an Autonomous Aurora Observation System in Antarctica National Institute of Polar Research, Japan

Masaki Okada, Hisao Yamagishi, Akira Kadokura, Yasunobu Ogawa and Yoshimasa Tanaka,

Outline

- Current status of autonomous magnetometer operated by Japanese Antarctic Research Expedition (JARE)
- Test of hybrid power system for autonomous observation infrastructure
- Autonomous aurora observation system design
- Future plan of the autonomous aurora observation sytem

Important points in Autonomous Obseravtion in Antarctica

(1) Electric power management in long dark winter months

(2) Data collection

- Send a field team by snow motor, or aeroplane expensive
- Data transfer via satellite phone communication cost

(3) Performance below -40°C

- •use heavy duty, MIL spec parts expensive
- •Good insulation (10cm $\Leftrightarrow \Delta T = 20^{\circ}C$)
- •Electric heating \rightarrow Power consumption >10 W~

Antarctic Autonomous Magnetometer Network

NIPR-type LPM
BAS-type LPM

Installation of NIPR-LPM

Feb. 2009: Utsteinen

Mar. 2008: Amunsen Bay

LPM at Utsteinen, Princess Elizabeth Station, 2009-2014

Total Power of 1W is difficult

because some component needs ~1 W, or more GPS (0.75 W), Magnetometer (0.5 W), Iridium telephone (10 W)

intermittent operation
<Power On> only at necessary time !

daily average

Operation Table

	Data Availability	3.712	2007					2008								2009							2010							2011																							
		1	2	з	4	5	6	7 8	3 8	1	1	1 2	1	23	3 4	15	6	7	8	9	1 0	1 1	2 1	2	3	4	5	6	7 8	3 8		1	1 2	1	2	3 4	5	6	7	88		1	1	1	23	3 4	5	6	7	8	9	1 1	1
# 6	Skalen	1		343			6.9 (14)	2	90 93 93		199							2000 2000	-	7 7 - 7			2							5				2 2 2			99 19				0					1							
#7	H57															- 25							- 2				`	Ň		3		- 10					- 200		101				20 20				87			8 - 2			
#8	Amunzen Bay																														,																					+	
#10	Sor Rondane																							10							``	`							_													-	
#11	H68	5- T-											2											5-3.									ì					-	-	-													
#13	Inhovde			101					1							- 90		ana 195		7																				-			20 20				3			8 - 9			

NI	PR	-LP	Μ

Power consumption table

	Instrument name	Peak mW	Daily Avg mW			
Intermittent	GPS	750	30			
Summer	Magnetometer	500	50			
380mW	Iridium phone	10000	280			
Winter	CPU	200	20			
105mW	CF memory	500	4.5			
Continuous	Sig. conditioner		25			
	FPGA		12			
78mW	RAM		10.5			
	CF memory		1.0			
	Power supply		30			

Total Power	DC-DC conv. output	Battery	Actual value at - 40°C
Summer	460 mW	770 mW	600 mW
Winter	180 mW	300 mW	190 mW

Summary

- Low power data logging system with satellite data transfer is developed.
- Stably work at -40°C in 2006 and 2007.
- To be used for larger scale magnetometer network observation near coastline in IPY period.
- More modification and test will be necessary for lower temperature deep inland operation.

Wind Generator FM910 (Rutland Corp., UK)

Performance of the Natural Energy Power Supply System

Automated Aurora Imager is necessary in Antarctica !

Is the Aurora in Arctic and Antarctic

Suddenly at 22:50, location of conjugate aurora jumped as much as 4 deg.

Determination of the conjugate point by adjusting the image to 'best fit'

Automated Aurora Imager is useful for tracking the motion of conjugate auroas

2000km

Concept of our Automated Aurora Imager System

Low-power All-sky Aurora Imager

Large data \Rightarrow Inmarsat BGAN telephone

- add Flux-gate Magnetometer
- add Dual frequency GPS receiver for TEC observation

⇒ Medium power consumption (16 W)
 Wind generator is necessary

Aurora Imager mount in insulation box

Flux-gate Magnetometer

	Power supply Voltage	Power Consum	Working hours	Daily power consum	Workig temperature			
	(DC V)	(W)	(h)	(Wh)	(°C)			
Flux-gate Magnetometer			24		-40~+70			
FGM I/F Unit	4~16	1.7	24	40.3	-20~+50			
Aurora Camera	$12 \pm 10\%$	2.2	24	52.8	<mark>−10</mark> ~+50			
Video Encoder	8~28	4.2	24	100.8	-40~+75			
GNSS board	3.3+5%/-3%	2.3	24	55.2	-40~+75			
HK data logger	9.6~16	0.35	24	8.4	-25~+50			
RX	10~16	5.7	2	11.4				
TX	10~16	14.0	1	14.0	-20~+00			
Central Cont Unit	$5\pm5\%$	1.2	24	28.8	-20~+70			
Hub	12~48	3.0	24	72.0	-40~+70			

Sum

383.7 **16 W**

Insulation Test

Vacume insulator panel

Wind Generator Rutland FM_910

Aluminum Mast 1.6m × 3 with guy wire

Wind Profile at Syowa and Princess Elizabeth Station (PES)

Wind at PES mostly < 5m/s

10m/s

Estimated Remaining Charge of the Batteries at PES

Estimated Power budget based on the Wind Profile at PES in 2008-2011

Average Power consumption of the Instruments 16 W

Wind Generator FM910 (40 W) * 3

Solar Panel GT136MS (60 W) * 4

Batteries Sun Lyte 12-5000X (100Ah) * 10 31kg * 10=310 kg Battery Box ECO Uni-Pak

箱外寸 1221×1145×750H

架台空間 1800×1200×900H

Control Box

Sealed Battery (100Ah) ×10

Elevation

Summary

- Autonomous magnetometer system has been operated in Antarctica since 2007.
- Hybrid power supply system has been tested since 2008.
- Autonomous aurora observation system will be deployed in 2015-2016 and will start observation in April, 2016