

Brandon D. Burmeister, LEED AP^{BD+C}, CPHC, Assoc. AIA Summit Station Construction Project Manager Polar Field Services, Inc.

CH2MHILL Polar Services

Subsurface Storage on the Greenland Ice Sheet

Polar Technology Conference, 26 March 2015

Common Practice:

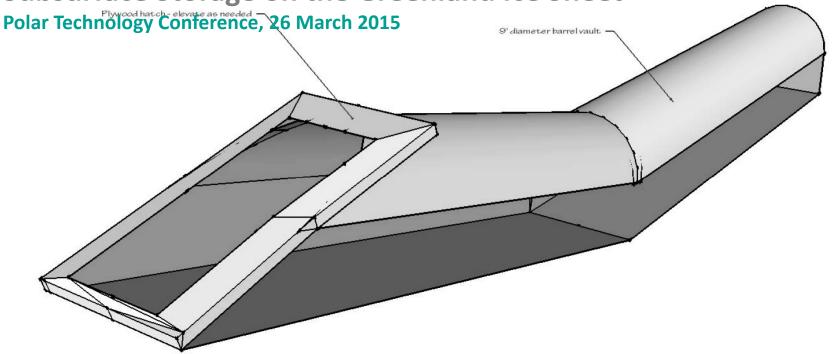
- 1. Plan, procure, and ship materials from CONUS to Summit via ANG (\$).
- 2. Excavate a trench in the snow via D6 (if local) or Yanmar snow blower.
- 3. Cover with a combination of timbers and SIPs (or steel beams and decking).
- 4. Observe deflection of roof and abandon when deformation is of concern.
- 5. Recover materials (equipment intensive) or leave behind within the snow.

Subsurface Storage on the Greenland Ice Sheet

all four surfaces

Polar Technology Conference, 26 March 2015

Approach: "Sullarniq" - Greenlandic for "blown-in snow"

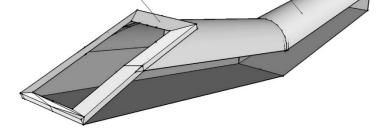

 An inflatable fuel storage balloon later removed to leave a cavernous subsurface storage space is a concept initially introduced by Tracy Dahl in 2011 -- citing advantages, challenges, and future potential for NSF applications on the Greenland Ice Sheet.

- Concurrently, the Univ. of Copenhagen making the same plans for the upcoming 2012 NEEM site establishment. A report on the test project has been shared and is referenced throughout this presentation.
- This 2012 installation has convinced the Danes to commit to this approach for all subsurface needs for their 2015 EGRIP camp establishment.

Subsurface Storage on the Greenland Ice Sheet

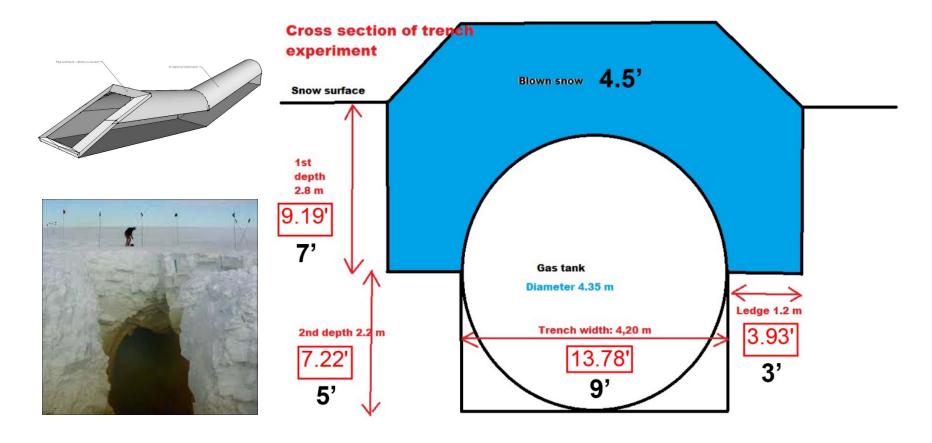
Proposed Sullarniq Approach:

- 1. Plan, procure, and ship fuel balloon (initial cost only).
- 2. Excavate a trench in the snow via D6 (if local) or Yanmar snow blower.
- 3. Inflate balloon and use Yanmar to cover in multiple (sintering) layers.
- 4. Deflate balloon and remove debris within resulting cavern.
- 5. Carve away intrusive snow for continued use or abandon w/o materials being left behind.


CH2MHILL Polar Services

Subsurface Storage on the Greenland Ice Sheet

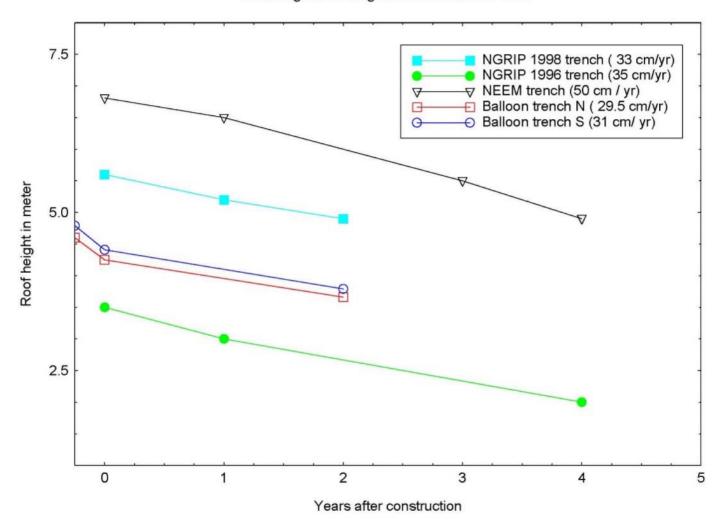
Polar Technology Conference, 26 March 2015


Advantages:

- Low lifetime cost (after initial balloon purchase), using snow for material.
- Reduced strain on logistics chain, greatly reduced ANG weight/cube.
- Extended duration of trench use by being able to reshape interior.
- Reusable, repairable balloon(s).
- Scalable translation of balloon allows for limitless length.
- No embodied energy/resources left behind.

Polar Technology Conference, 26 March 2015

2012 NEEM Profile Measurements- JP Steffensen (2015 Sullarniq Eurocore dimensions in black)


- 2 days to excavate
- 2 days to back blow
- 3 days for sintering
- Arch density of 0.55 g/cm³

Subsurface Storage on the Greenland Ice Sheet

Polar Technology Conference, 26 March 2015

Lowering of roof heights in trenches over time.

Subsurface Storage on the Greenland Ice Sheet

Polar Technology Conference, 26 March 2015

Outstanding Questions:

- Number of -30F inflations before balloon degradation?
- Maximum width/size of snow bridge?
- Will there be conducive Wx?

Potential Long Range Uses:

- Subsurface winter berm for both small and large objects such as tractors (reduced equipment ops & Station Open labor)
- Next generation utilidor (full access & extended life by reducing stress)
- Occupied facilities
 – places
 of work and research (Flux,
 Noone facility)
- Pedestrian corridor from skiway, to AWO & telescope (allowing for safe passage even during inclimate Wx)
- Anything over 2,000cf